
Copyright © 2015 NTT Corp. All Rights Reserved.

Hardware Accelerating Linux
Network Functions
Part I: Virtual Switching Technologies in Linux

Toshiaki Makita
NTT Open Source Software Center

2 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅVirtual switching technologies in Linux
ÅSoftware switches and NIC embedded switch

ÅUserland APIs and commands for bridge

ÅIntroduction to Recent features of bridge
(and others)
ÅFDB manipulation

ÅVLAN filtering

ÅLearning/flooding control

ÅNon - promiscuous bridge

ÅVLAN filtering for 802.1ad (Q - in - Q)

ÅDemo
ÅSetting up non - promiscuous bridge

Part I topics

3 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅLinux kernel engineer at NTT Open Source
Software Center

ÅTechnical support for NTT group companies

ÅActive patch submitter on kernel networking
subsystem

Åbridge, vlan , etc.

Who is Toshiaki Makita?

4 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅLinux (kernel) has 3 types of software
switches

Åbridge

Åmacvlan

ÅOpen vSwitch

ÅNIC embedded switch in SR - IOV device is
also used instead of software switches

ÅThese are often used for network backend in
server virtualization

Switching technologies in Linux

5 Copyright © 2015 NTT Corp. All Rights Reserved.

kernel

ÅHW switch like device (IEEE 802.1D)
ÅHas FDB (Forwarding DB), STP (Spanning tree), etc.
ÅUse promiscuous mode that allows to receive all packets
ÅCommon NICs filter unicast whose dst is not its mac address

without promiscuous mode
ÅMany NICs also filter multicast / vlan - tagged packets by default

bridge

eth0

TCP/IP

kernel

eth0

TCP/IP

bridge

eth1

handler hook

pass to
upper layer

promiscuous
mode

without bridge with bridge

br0

if dst mac is bridge device

promiscuous
mode

6 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅUsed with tap device

ÅTap device

Åpacket transmission - > file read

Åfile write - > packet reception

bridge with KVM

kernel

eth0

bridge

tap0

qemu / vhost

vfs

Guest

eth0

fd

read/write

7 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅVLAN using not 802.1Q tag but mac address

Å4 types of mode

Åprivate

Åvepa

Åbridge

Åpassthru

ÅUsing unicast
filtering if supported,
instead of promiscuous
mode
(except for passthru)

ÅUnicast filtering allows
NIC to receive multiple
mac addresses

macvlan

kernel

eth0

macvlan0 macvlan1

MAC address A MAC address B

macvlan

handler hook

unicast filtering

8 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅLight weight bridge

ÅNo source learning

ÅNo STP

ÅOnly one uplink

ÅAllow traffic
between macvlans
(via macvlan stack)

macvlan (bridge mode)

kernel

eth0

macvlan0 macvlan1

MAC address A MAC address B

macvlan

External SW

9 Copyright © 2015 NTT Corp. All Rights Reserved.

Åmacvtap

Åtap - like macvlan variant

Åpacket reception
 - > file read

Åfile write
 - > packet transmission

macvtap (private, vepa , bridge) with KVM

kernel eth0

macvtap0 macvtap1

macvlan

qemu / vhost

Guest

eth0

fd

read/write

qemu / vhost

Guest

eth0

fd

read/write

10 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅSupports OpenFlow
ÅCan be used as a normal switch as well
ÅHas many features (VLAN tagging, VXLAN, Geneve , GRE, bonding, etc.)

ÅFlow based forwarding
ÅControl plane in user space
Åf low miss - hit causes upcall to userspace daemon

Open vSwitch

kernel

eth0

user space

openvswitch
(datapath)
data plane

eth1

handler hook

promiscuous
mode

OpenFlow
controller

daemon
(ovs-vswitchd)
control plane

upcall

Flow table
(cache)

Flow table

FDB

11 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅConfiguration is the same as
bridge

Åused with tap device

Open vSwitch with KVM

kernel

eth0

openvswitch

tap0

qemu / vhost

vfs

Guest

eth0

fd

read/write

12 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅSR- IOV

ÅAddition to PCI normal physical function (PF),
allow to add light weight virtual functions (VF)

ÅVF appears as a network interface (eth0_0, eth0_1...)

ÅSome SR - IOV devices have switches in them

Åallow PF - VF / VF - VF communication

NIC embedded switch (SR - IOV)

kernel SR-IOV supported NIC

eth0 eth0_0 eth0_1

PF VF VF

embedded switch

13 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅSR- IOV with KVM

ÅUse PCI - passthrough to attach VF to guest

NIC embedded switch (SR - IOV)

kernel SR-IOV supported NIC

eth0

embedded switch

qemu

Guest

qemu

Guest

eth0_1 eth0_0

14 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅVarious APIs

Åioctl

Åsysfs

Ånetlink

ÅNetlink is preferred for new features

ÅBecause it is extensible

Åsysfs is sometimes used

ÅCommands

Åbrctl (in bridge - utils , using ioctl / sysfs)

Åip / bridge (in iproute2, using netlink)

Userland APIs and commands (bridge)

15 Copyright © 2015 NTT Corp. All Rights Reserved.

Åbrctl

ÅThese operations can be performed by netlink
based commands as well (Since kernel 3.0)

ÅAnd recent features can only be used by netlink
based ones or direct sysfs write

Userland APIs and commands (bridge)

brctl addbr <bridge > ... create new bridge
brctl addif <bridge> <port > ... attach port to bridge
brctl showmacs <bridge > ... show fdb entries

ip link add <bridge> type bridge ... create new bridge
ip link set <port> master <bridge> ... attach port
bridge fdb show ... show fdb entries

bridge fdb add
bridge vlan add
etc...

16 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅFDB manipulation

ÅVLAN filtering

ÅLearning / flooding control

ÅNon - promiscuous bridge

ÅVLAN filtering for 802.1ad (Q - in - Q)

Recent features of bridge (and others)

17 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅFDB

ÅForwarding database

ÅLearning: packet arrival triggers entry creation

ÅSource MAC address is used with incoming port

ÅFlood if failed to find entry

ÅFlood: deliver packet to all ports but incoming one

FDB manipulation

kernel

eth0

bridge

eth1 packet
arrival from
aa:bb:cc:dd:ee:ff

MAC address Dst

aa:bb:cc:dd:ee:ff eth0

...

learning

FDB

18 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅFDB manipulation commands

ÅSince kernel 3.0

FDB manipulation

kernel

eth0

bridge

eth1 specified port

MAC address Dst

specified mac port

...

bridge fdb add <mac address> dev <port> master temp
bridge fdb del <mac address> dev <port> master

19 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅWhat's " temp"?
ÅThere are 3 types of FDB entries

Åpermanent (local)

Åstatic

Åothers (dynamically learned by packet arrival)

Å" temp" means static here

Å" bridge fdb "'s default is

permanent

Åpermanent here means
"deliver to bridge device"
(e.g. br0)

Åpermanent doesn't deliver
to specified port

FDB manipulation

kernel

eth0

bridge
(br0)

eth1

br0 if match
permanent

bridge fdb add <mac address> dev <port> master temp

specified port

20 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅWhat's " master "?
ÅRemember this command?

Å" bridge fdb "'s default is " self "

ÅIt adds entry to specified port (eth0) itself!

FDB manipulation

kernel

eth0

bridge

eth1 specified port
(self)

master

bridge fdb add <mac address> dev <port> master temp

ip link set <port> master <bridge> ... attach port

21 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅWhen to use " self "?
ÅUnicast /multicast filtering

ÅUse case: SR - IOV embedded SW

ÅVTEP- Mac mapping table (vxlan)

FDB manipulation

kernel SR-IOV supported NIC

eth0 eth0_0 eth0_1
PF VF VF

embedded switch

bridge master

self

22 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅExample: Intel 82599 (ixgbe)
ÅSome people think of using both bridge and SR - IOV due

to limitation of VFs
Åbridge puts eth0 (PF) into promiscuous, but...
ÅUnknown MAC address from VF goes to wire, not to PF

FDB manipulation

kernel Intel 82599 (ixgbe)

eth0
PF

embedded switch

bridge

qemu

Guest 2

eth0_0

qemu

Guest 1

eth1

tap

MAC A MAC C

VF

MAC B

Dst . A

23 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅExample: Intel 82599 (ixgbe)

ÅType " bridge fdb add A dev eth0 " on host

ÅTraffic to A will be forwarded to bridge

FDB manipulation

kernel Intel 82599 (ixgbe)

eth0
PF

embedded switch

bridge

qemu

Guest 2

eth0_0

qemu

Guest 1

eth1

tap

MAC A MAC C

VF

MAC B

Dst . A

add fdb entry

24 Copyright © 2015 NTT Corp. All Rights Reserved.

Å802.1Q Bridge

ÅSince kernel 3.9

ÅFilter packets according to vlan tag

ÅForward packets according to vlan tag as well as mac
address

ÅInsert / strip vlan tag

VLAN filtering

kernel

eth0

bridge

eth1

MAC address Vlan Dst

aa:bb:cc:dd:ee:ff 10 eth0

...

FDB

filter disallowed vlan

insert / strip vlan tag

25 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅIngress / egress filtering policy

ÅIncoming / outgoing packet is filtered if matching
filtering policy

ÅPer- port per - vlan policy

ÅDefault is "disallow all vlans "

ÅSince kernel 3.18, vid 1 is allowed by default

ÅAll packets are dropped except for untagged or vid 1

VLAN filtering

kernel

eth0

bridge

eth1

filter by vlan
at ingress

filter by vlan
at egress

Port Allowed
Vlans

eth0 10

20

eth1 20

30

Filtering table

VID 10

allow 10 disallow 10

26 Copyright © 2015 NTT Corp. All Rights Reserved.

ÅPVID (Port VID)

ÅUntagged (and VID 0) packet is assigned this VID

ÅPer- port configuration

ÅDefault PVID is 1 (Since kernel 3.18)

ÅEgress policy untagged

ÅOutgoing packet that matches this policy get untagged

ÅPer- port per - vlan policy

VLAN filtering

kernel

eth0

bridge

eth1

apply pvid
(insert vid 20)

apply untagged
(strip tag 20)

Port Allowed
Vlans

PVID Egress
Untag

eth0 10 Sæ

20 Sæ Sæ

eth1 20 Sæ Sæ

30

Filtering table

untagged
packet

