
kTLS Offload Performance Enhancements for Real-life Applications

Bar Tuaf, Tal Gilboa, Tariq Toukan

Nvidia

Tel-Hai/Yokneam, Israel

{bartu, talgi, tariqt}@nvidia.com

Abstract

Information security is a continuously growing concern for

all internet services. As of today, more than 70% of Internet

traffic is encrypted using Transport Layer Security (TLS).

kTLS (kernel TLS) serves as a kernel layer unit that offers

TLS operations support to secure TCP connections. First in-

troduced in kernel v4.13 as a SW offload for user space li-

braries, NVIDIA Mellanox ConnectX-6Dx kTLS TX of-

fload support was introduced by mlx5e driver in kernel v5.6

and the RX ability was added in kernel v5.9.

In this paper, we will review the life cycle of a HW offloaded

kTLS connection and the driver-HW interaction required to

support it. We will demonstrate and analyze the significant

performance speed-up gained by offloading kTLS opera-

tions to the network device. It will be showcased with the

well-known Nginx web server, using mlx5e driver on top of

an NVIDIA Mellanox ConnectX-6Dx NIC.

Keywords

TLS Offload, TX Offload, RX offload, NIC, Network
Devices, TLS, SW kTLS, kTLS device, Crypto, TCP,
Nginx, Wrk.

Introduction

With today’s ever-increasing link speeds, we see an increase
in CPU usage, for general packet processing. Even when
using known offloads like TSO, there might be CPU
limitations for running 100GbE at a high packet rate. This
problem tenfold when introducing the TLS protocol
processing overhead.

Offloading crypto processing from the application to kernel
and from kernel to NIC led the way for easy to maintain,
high-performing implementation for secure internet traffic.
It allows relying on the resiliency and robustness of the
networking stack while eliminating the need for expensive
crypto operations by offloading them to the NIC.
Transmitted TLS offload packets traversing the stack
unencrypted leave behind computational tasks for the
device. In the same manner, received packets are decrypted
by the device before being handed over to the stack. By
reducing this CPU consuming operations on the software
side, we can speed-up any application which uses a secure
network. This way more CPU resources can be assigned for
packet processing and 100GbE line-rate may be achieved.

Motivation

Running applications in a secure environment is necessary
to ensure that private data is kept private. With the constant
increase in networking line rates, offloading work from the
CPU to the networking device is essential in order to keep
up the pace free as much CPU as possible for network
processing.

TLS TX Offload path

This section describes transmit-side TLS offload. Leaving
encryption costly assignments to the NIC requires the
coordination of software. Framing TLS packets as well as
TLS headers and trailers are examples of software
responsibilities. In addition, software should mark the
socket as offloaded and place those packets into the
dedicated socket. This combined with offloading the keys
used by TLS sockets for encryption to the device compel
only single send operation which helps to reduce PCIe
latency and bandwidth.

TLS protocol encrypts each record independently while
other well-known security protocols do so per packet. Each
of these TLS records can be located on several TCP
segments, while TCP segments can store multiple TLS
records. Therefore, a driver must update the hardware in
case of drops/retransmission.

Figure 1- several TLS records spread on multiple TCP packets.

Data path

 The TLS TX data path diverges right after calling
sock_sendmsg() (and the subsequent call to
inet_sendmsg()). kTLS SW implementation initiates
encryption by calling tls_sw_sendmsg(), which allows
parallel encryption/decryption (for systems with support for
AES instructions set). But there’s more to be done; the
message to transmit is iterated, and on each iteration an
encrypted message is allocated over the socket. The message
is then processed for the wanted socket operation – in this
case SK_PASS, which continues processing by calling
tls_push_record(). while offloaded sockets go directly to
tls_device_sendmsg() and tls_push_data(). Next, both flows

travel toward the driver transmit functions. While the
software works to encrypt the data, the TLS offload skips
and sends plaintext to the marked socket.

Mlx5e kTLS TX flow examines each packet for the
following conditions:

1. Does the packet belong to a TLS offloaded socket?
if it does not, regular transmit packet processing
will handle it.

2. Does the packet TCP sequence number equal the
expected TCP sequence number that the driver/HW
maintain? If it does not, trigger the resync flow
(sync HW with the crypto context for the checked
packet).

Subsequently software will send the packet for
authentication and encryption on-the-fly by the NIC.

Resynchronization

 From the previous sections we understand that in order to
successfully process TCP packets on an offload socket,
hardware must track the relevant connection crypto context.
The driver is responsible for verifying that each SKB
designated to TLS offload must have the expected TCP
sequence number; otherwise it will be cast as a
retransmission and transmit resync flow will be activated to
restore the hardware state: Driver will post the packet,
preceded with fast path communication to the device,
syncing it with the upcoming TLS record state and TCP
sequence number, doing the necessary fencing between the
control communication and the packet data to guarantee
proper ordering. No TLS stack procedure is involved in this
process. This enforces the software to track TLS records
and release them only after the record last SKB is
acknowledged.

TLS RX Offload path

On the receive side, establishing a TLS offload connection
requires the TLS kernel stack to provide the relevant TLS
context to the device driver. This TLS context includes keys,
IV and TCP-related context including 5-tuple and a
sequence number, in addition to the TLS record sequence
number. Once the NVIDIA Mellanox device is in offload
state and as long as all TCP packets are obtained in-order,
the NIC will decrypt the packets and mark them to notify the
software to skip decryption. However, in a congested
environment reordering/drops may occur; in this case our
device will stop decrypting packets for this connection and
will request the driver to resynchronize it in order to return
to offload state.

Data path

The RX descriptor indicates whether the incoming packet
was decrypted by the device. In this case the driver mark
skb->decrypted and hands the packet to the stack. Similar to

the transmit side path, TLS RX data paths are split in the
expected sock_recvmsg() (also here after a call to
inet_recvmsg()). While TLS offload continues to
tls_device_recvmsg(), kTLS will call tls_sw_ recvmsg() to
invoke decryption methods. A call chain generates the
crypto function to decrypt packets by the novel OpenSSL
libraries, while packets decrypted by hardware will skip
those and go directly to the kTLS process and validation
stages. Each SKB handled by the TLS RX offload path must
hold metadata for driver usage. Packet that indicates an
issue/error must not be aggregated by any layer besides
kTLS. For each record received by the socket the TLS will
perform the following checks:

1. Are all packets in the TLS record are decrypted?

a. If true, copy the decrypted data to the user
space.

2. Otherwise, check if part of the record is decrypted.

a. If true, decrypt the remaining part using
SW kTLS and copy plaintext data to user
space.

3. Otherwise, fully encrypted record been received.

a. Inform the driver to trigger a HW
resynchronization flow and copy the
decrypted data to the user space.

Partial decryption

 Out of order can lead to handing software with TLS
records that contains both cipher and plain text packets. In
such cases kTLS validates the authentication and decrypts
ciphertext packets within the mixed TLS record. The AES-
GCM algorithm uses XOR operation on the date with the
suitable keystream, which is generated using the TLS record
IV (Initialization Vector). In order to get ciphertext or
plaintext for a specific packet, XOR should be performed
once with the keystream which leads to a single trip throw
the TLS record.

Figure 2- packet 3 received decrypted will all other is plaintext, SW will

finish the job.

Resynchronization

 The above flow shows that when the TLS offload engine
encounters drops or an out-of-order packets, it might lose
the TLS record framing within the TCP stream. In this case
our device will indicate a resynchronization request in the
RX descriptor and will stop decrypting packets for this
connection until resynchronization procedure is completed

successfully. Our driver uses the new async resync API in
which it asks the TLS stack for a resync but provides the
TCP sequence asynchronously at a later point after querying
the device for it. Once the TLS stack finds a matching packet
for that TCP sequence it informs the driver that configures
the device back to offload state.

Figure 3- packets 3,4 and 5 contains cipher text, resync flow was completed

successfully towards packet #6.

TX offload Real-life Application CPU saving

We demonstrate kTLS device TX offload benefits over
Nginx server and Wrk benchmarking tool, using AMD
EPYC 7742 connected through switch with NVIDIA
Mellanox ConnectX-6Dx NICs. Wrk opens various amounts
of connections over 64 threads, while repeatedly requesting
1MB files. Nginx and Wrk responds with either SW kTLS
using OpenSSL TLSv1.2 and AES128-GCM-256 cipher
suite, kTLS device offload and plain HTTP traffic. We used
modified Nginx which uses sendfile() operations for HTTPS
traffic to a better comparison as HTTP support it by default.
This sendfile() implementation still copies the data to
protect against changes in the page cache.

Figure 4- HTTPS kTLS device TX offload CPU utilization. Right table

shows throughput reported on Wrk (Client). Left table show the number of

active cores used in each case on server side (Nginx) and the CPU

improvement between HTTPS using SW kTLS and kTLS device TX

offload.

Hundreds of connections are enough in order to get full wire
speed (100G) regardless the type of traffic, in the range
between 1024 to 32k connections all cases show ~85Gbps
application layer throughput (Goodput – excluding
networking headers). CPU improvement was calculated by
the following formula:

kTLS device TX offload saves 25% of the CPU used by SW
kTLS with 32k connections and %51 of the core used to
achieve line-rate over 1024 connections. In addition, we can
notice a lower CPU utilization on server side with HTTPS
using kTLS device TX offload in comparison to HTTP, this
is a result of higher packet rate transmitted when running
HTTP traffic.

Expected Improvement

In order to get a feel for the expected performance impact of
full unidirectional kTLS device offload, we ran a patched
version of Iperf, with OpenSSL support. This simulated a
small-scale client-server application and would allow us to
observe both an improvement in bandwidth and a reduction
in CPU utilization.

Comparing the performance of SW kTLS implementation
and full undir HW kTLS offload (TX offload on server side
and RX offload on client side), we noticed a significant
improvement in bandwidth, due to the reduced CPU
utilization. With a single TCP stream, we achieved more
than 2.5x speedup. For 8 streams, where SW kTLS struggled
around 50Gbps, the HW offload already achieved 100GbE
line-rate. In all cases, with 16 and above streams, where both
implementations achieved a 100GbE line-rate, the HW
offload case had much lower CPU utilization.

Figure 5- TLS offload throughput and CPU utilization. Top table shows

better bandwidth as number of connections increase, bottom tables shows

how CPU recover from TLS protocol overhead in both sender and receiver.

Once again sender active cores show better CPU utilization
on transmit side for kTLS device in comparison to TCP
traffic, reflecting higher packet rate for TCP. The results
leave us with two main expectations for the full
unidirectional kTLS device offload real-life cases:

1. Where SW kTLS can’t achieve line-rate – HW
offload is expected to provide around 2.5x

bandwidth speed-up or get to line-rate while
lowering CPU utilization.

2. Where SW kTLS achieves line-rate – HW offload
should achieve line-rate as well, with lower CPU
utilization (50-60% less).

References
1. “TLS Offload to Network Devices”, Boris Pismenny,
Ilya Lesokhin, Liran Liss and Haggai Eran (paper based on
a talk presented at Netdev 1.2, Tokyo, Japan, September 1,
2016). The Technical Conference on Linux Networking.
https://netdevconf.info/1.2/papers/netdevconf-TLS.pdf.

2. “TLS Offload to Network Devices - Rx offload”, Boris
Pismenny, Ilya Lesokhin and Liran Liss (paper based on a
talk presented at Netdev 2.2, Seoul, Korea, November 1,
2017). The Technical Conference on Linux Networking.
https://netdevconf.info/2.2/papers/pismenny-tlscrypto-
talk.pdf

3. “Crypto kernel TLS socket”, Dave Watson, accessed

September 22, 2016,

https://tools.ietf.org/html/rfc5246.

4. RFC 6347: Datagram Transport Layer Security Version

1.2, E. Rescola, accessed November 1, 2016.

https://tools.ietf.org/html/rfc6347.

5. RFC 5246: The Transport Layer Security (TLS) Protocol

Version 1.2, T. Dierks, University of Bern, Switzerland,

accessed August 1, 2008.

https://tools.ietf.org/html/rfc5246.

6. Nginx, Admin Guide. Nginx SSL Termination.

https://docs.nginx.com/nginx/admin-guide/security-

controls/terminating-ssl-http/

7. Nginx, Documentation. Module

ngx_stream_core_module.

http://nginx.org/en/docs/stream/ngx_stream_core_module.

html

8. Nvidia Mellanox, Product Documentation. Kernel
Transport Layer Security (kTLS) offloads.
https://docs.mellanox.com/display/OFEDv502180/Kernel+
Transport+Layer+Security+%28kTLS%29+Offloads

https://netdevconf.info/1.2/papers/netdevconf-TLS.pdf
https://netdevconf.info/2.2/papers/pismenny-tlscrypto-talk.pdf
https://netdevconf.info/2.2/papers/pismenny-tlscrypto-talk.pdf
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc5246
https://docs.nginx.com/nginx/admin-guide/security-controls/terminating-ssl-http/
https://docs.nginx.com/nginx/admin-guide/security-controls/terminating-ssl-http/
http://nginx.org/en/docs/stream/ngx_stream_core_module.html
http://nginx.org/en/docs/stream/ngx_stream_core_module.html
https://docs.mellanox.com/display/OFEDv502180/Kernel+Transport+Layer+Security+%28kTLS%29+Offloads
https://docs.mellanox.com/display/OFEDv502180/Kernel+Transport+Layer+Security+%28kTLS%29+Offloads

