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Abstract 

Information security is a continuously growing concern for 

all internet services. As of today, more than 70% of Internet 

traffic is encrypted using Transport Layer Security (TLS).  

kTLS (kernel TLS) serves as a kernel layer unit that offers 

TLS operations support to secure TCP connections. First in-

troduced in kernel v4.13 as a SW offload for user space li-

braries, NVIDIA Mellanox ConnectX-6Dx kTLS TX of-

fload support was introduced by mlx5e driver in kernel v5.6 

and the RX ability was added in kernel v5.9. 

 

In this paper, we will review the life cycle of a HW offloaded 

kTLS connection and the driver-HW interaction required to 

support it. We will demonstrate and analyze the significant 

performance speed-up gained by offloading kTLS opera-

tions to the network device. It will be showcased with the 

well-known Nginx web server, using mlx5e driver on top of 

an NVIDIA Mellanox ConnectX-6Dx NIC. 
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Introduction 

With today’s ever-increasing link speeds, we see an increase 
in CPU usage, for general packet processing. Even when 
using known offloads like TSO, there might be CPU 
limitations for running 100GbE at a high packet rate. This 
problem tenfold when introducing the TLS protocol 
processing overhead. 
  
Offloading crypto processing from the application to kernel 
and from kernel to NIC led the way for easy to maintain, 
high-performing implementation for secure internet traffic. 
It allows relying on the resiliency and robustness of the 
networking stack while eliminating the need for expensive 
crypto operations by offloading them to the NIC. 
Transmitted TLS offload packets traversing the stack 
unencrypted leave behind computational tasks for the 
device. In the same manner, received packets are decrypted 
by the device before being handed over to the stack. By 
reducing this CPU consuming operations on the software 
side, we can speed-up any application which uses a secure 
network. This way more CPU resources can be assigned for 
packet processing and 100GbE line-rate may be achieved. 

Motivation 

Running applications in a secure environment is necessary 
to ensure that private data is kept private. With the constant 
increase in networking line rates, offloading work from the 
CPU to the networking device is essential in order to keep 
up the pace free as much CPU as possible for network 
processing. 

 

TLS TX Offload path 

This section describes transmit-side TLS offload. Leaving 
encryption costly assignments to the NIC requires the 
coordination of software. Framing TLS packets as well as 
TLS headers and trailers are examples of software 
responsibilities. In addition, software should mark the 
socket as offloaded and place those packets into the 
dedicated socket. This combined with offloading the keys 
used by TLS sockets for encryption to the device compel 
only single send operation which helps to reduce PCIe 
latency and bandwidth. 

TLS protocol encrypts each record independently while 
other well-known security protocols do so per packet. Each 
of these TLS records can be located on several TCP 
segments, while TCP segments can store multiple TLS 
records. Therefore, a driver must update the hardware in 
case of drops/retransmission. 

Figure 1- several TLS records spread on multiple TCP packets. 

Data path  

 The TLS TX data path diverges right after calling 
sock_sendmsg() (and the subsequent call to 
inet_sendmsg()). kTLS SW implementation initiates 
encryption by calling tls_sw_sendmsg(), which allows 
parallel encryption/decryption (for systems with support for 
AES instructions set). But there’s more to be done; the 
message to transmit is iterated, and on each iteration an 
encrypted message is allocated over the socket. The message 
is then processed for the wanted socket operation – in this 
case SK_PASS, which continues processing by calling 
tls_push_record(). while offloaded sockets go directly to 
tls_device_sendmsg() and tls_push_data(). Next, both flows 



travel toward the driver transmit functions. While the 
software works to encrypt the data, the TLS offload skips 
and sends plaintext to the marked socket.  

Mlx5e kTLS TX flow examines each packet for the 
following conditions:  

1. Does the packet belong to a TLS offloaded socket? 
if it does not, regular transmit packet processing 
will handle it. 

2. Does the packet TCP sequence number equal the 
expected TCP sequence number that the driver/HW 
maintain? If it does not, trigger the resync flow 
(sync HW with the crypto context for the checked 
packet). 

Subsequently software will send the packet for 
authentication and encryption on-the-fly by the NIC.  

 

Resynchronization 

 From the previous sections we understand that in order to 
successfully process TCP packets on an offload socket, 
hardware must track the relevant connection crypto context. 
The driver is responsible for verifying that each SKB 
designated to TLS offload must have the expected TCP 
sequence number; otherwise it will be cast as a 
retransmission and transmit resync flow will be activated to 
restore the hardware state: Driver will post the packet, 
preceded with fast path communication to the device, 
syncing it with the upcoming  TLS record state and TCP 
sequence number, doing the necessary fencing between the 
control communication and the packet data to guarantee 
proper ordering. No TLS stack procedure is involved in this 
process.  This enforces the software to track TLS records 
and release them only after the record last SKB is 
acknowledged. 

 

TLS RX Offload path 

On the receive side, establishing a TLS offload connection 
requires the TLS kernel stack to provide the relevant TLS 
context to the device driver. This TLS context includes keys, 
IV and TCP-related context including 5-tuple and a 
sequence number, in addition to the TLS record sequence 
number. Once the NVIDIA Mellanox device is in offload 
state and as long as all TCP packets are obtained in-order, 
the NIC will decrypt the packets and mark them to notify the 
software to skip decryption. However, in a congested 
environment reordering/drops may occur; in this case our 
device will stop decrypting packets for this connection and 
will request the driver to resynchronize it in order to return 
to offload state.  

Data path 

The  RX descriptor indicates whether the incoming packet 
was decrypted by the device. In this case the driver mark 
skb->decrypted and hands the packet to the stack. Similar to 

the transmit side path, TLS RX data paths are split in the 
expected sock_recvmsg() (also here after a call to 
inet_recvmsg()). While TLS offload continues to 
tls_device_recvmsg(), kTLS will call tls_sw_ recvmsg() to 
invoke decryption methods. A call chain generates the 
crypto function to decrypt packets by the novel OpenSSL 
libraries, while packets decrypted by hardware will skip 
those and go directly to the kTLS process and validation 
stages. Each SKB handled by the TLS RX offload path must 
hold metadata for driver usage. Packet that indicates an 
issue/error must not be aggregated by any layer besides 
kTLS. For each record received by the socket the TLS will 
perform the following checks: 

1. Are all packets in the TLS record are decrypted? 

a. If true, copy the decrypted data to the user 
space. 

2. Otherwise, check if part of the record is decrypted. 

a. If true, decrypt the remaining part using 
SW kTLS and copy plaintext data to user 
space. 

3. Otherwise, fully encrypted record been received. 

a. Inform the driver to trigger a HW 
resynchronization flow and copy the 
decrypted data to the user space. 

 

Partial decryption 

 Out of order can lead to handing software with TLS 
records that contains both cipher and plain text packets. In 
such cases kTLS validates the authentication and decrypts 
ciphertext packets within the mixed TLS record. The AES-
GCM algorithm uses XOR operation on the date with the 
suitable keystream, which is generated using the TLS record 
IV (Initialization Vector). In order to get ciphertext or 
plaintext for a specific packet, XOR should be performed 
once with the keystream which leads to a single trip throw 
the TLS record. 

Figure 2- packet 3 received decrypted will all other is plaintext, SW will 

finish the job. 

 

Resynchronization 

 The above flow shows that when the TLS offload engine 
encounters drops or an out-of-order packets, it might lose 
the TLS record framing within the TCP stream. In this case 
our device will indicate a resynchronization request in the 
RX descriptor and will stop decrypting packets for this 
connection until resynchronization procedure is completed 



successfully. Our driver uses the new async resync API in 
which it asks the TLS stack for a resync but provides the 
TCP sequence asynchronously at a later point after querying 
the device for it. Once the TLS stack finds a matching packet 
for that TCP sequence it informs the driver that configures 
the device back to offload state.  

Figure 3- packets 3,4 and 5 contains cipher text, resync flow was completed 

successfully towards packet #6. 

 

TX offload Real-life Application CPU saving 

We demonstrate kTLS device TX offload benefits over 
Nginx server and Wrk benchmarking tool, using AMD 
EPYC 7742 connected through switch with NVIDIA 
Mellanox ConnectX-6Dx NICs. Wrk opens various amounts 
of connections over 64 threads, while repeatedly requesting 
1MB files. Nginx and Wrk responds with either SW kTLS 
using OpenSSL TLSv1.2 and AES128-GCM-256 cipher 
suite, kTLS device offload and plain HTTP traffic. We used 
modified Nginx which uses sendfile() operations for HTTPS 
traffic to a better comparison as HTTP support it by default. 
This sendfile() implementation still copies the data to 
protect against changes in the page cache. 

Figure 4- HTTPS kTLS device TX offload CPU utilization. Right table 

shows throughput reported on Wrk (Client). Left table show the number of 

active cores used in each case on server side (Nginx) and the CPU 

improvement between HTTPS using SW kTLS and kTLS device TX 

offload. 

 

Hundreds of connections are enough in order to get full wire 
speed (100G) regardless the type of traffic, in the range 
between 1024 to 32k connections all cases show ~85Gbps 
application layer throughput (Goodput – excluding 
networking headers). CPU improvement was calculated by 
the following formula: 

kTLS device TX offload saves 25% of the CPU used by SW 
kTLS with 32k connections and %51 of the core used to 
achieve line-rate over 1024 connections. In addition, we can 
notice a lower CPU utilization on server side with HTTPS 
using kTLS device TX offload in comparison to HTTP, this 
is a result of higher packet rate transmitted when running 
HTTP traffic.  

Expected Improvement 

In order to get a feel for the expected performance impact of 
full unidirectional kTLS device offload, we ran a patched 
version of Iperf, with OpenSSL support. This simulated a 
small-scale client-server application and would allow us to 
observe both an improvement in bandwidth and a reduction 
in CPU utilization. 

Comparing the performance of SW kTLS implementation 
and full undir HW kTLS offload (TX offload on server side 
and RX offload on client side), we noticed a significant 
improvement in bandwidth, due to the reduced CPU 
utilization. With a single TCP stream, we achieved more 
than 2.5x speedup. For 8 streams, where SW kTLS struggled 
around 50Gbps, the HW offload already achieved 100GbE 
line-rate. In all cases, with 16 and above streams, where both 
implementations achieved a 100GbE line-rate, the HW 
offload case had much lower CPU utilization.  

Figure 5- TLS offload throughput and CPU utilization. Top table shows 

better bandwidth as number of connections increase, bottom tables shows 

how CPU recover from TLS protocol overhead in both sender and receiver. 

 

Once again sender active cores show better CPU utilization 
on transmit side for kTLS device in comparison to TCP 
traffic, reflecting higher packet rate for TCP. The results 
leave us with two main expectations for the full 
unidirectional kTLS device offload real-life cases: 

1. Where SW kTLS can’t achieve line-rate – HW 
offload is expected to provide around 2.5x 



bandwidth speed-up or get to line-rate while 
lowering CPU utilization. 

2. Where SW kTLS achieves line-rate – HW offload 
should achieve line-rate as well, with lower CPU 
utilization (50-60% less). 
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