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Abstract
In-situ Operations, Administration, and Maintenance (IOAM)
is currently under standardization at the IETF. It allows for
collecting telemetry and operational information along a path,
within packets, as part of an existing (possibly additional)
header. This paper discusses the very first implementation of
IOAM for the Linux kernel with IPV6 as encapsulation proto-
col. We also evaluate our implementation, available as open
source, under a controlled environment.

Introduction
Operations, Administration, and Maintenance (OAM)

refers to a set of techniques and mechanisms for performing
fault detection and isolation and for performance measure-
ments. Throughout the years, multiple OAM tools have been
developed for various layers in the protocol stack [13], going
from basic traceroute [16] to Bidirectional Forwarding
Detection (BFD [10]). Recently, OAM has been pushed fur-
ther through In-Situ OAM (IOAM) [2, 4, 3]. The term “In-
Situ” directly refers to the fact that the OAM and telemetry
data is carried within packets rather than being sent through
packets specifically dedicated to OAM. The IOAM traffic is
embedded in data traffic, but not part of the packet payload.

The well-known IPV4 Record-Route option [15] can be
considered as an IOAM mechanism. However, compared to
that, IOAM comes with multiple advantages: (i) IOAM is not
limited to 40 BYTES as for the Record-Route option (record-
ing so a maximum of 9 IPV4 addresses); (ii) IOAM allows
different types of information to be captured, including not
only path tracing information but additional operational and
telemetry data such as timestamps, sequence numbers, or
even generic data such as queue size or geo-location of the
node that forwarded the packet; (iii) IOAM allows one to
record the path taken by a packet within a fixed amount of
added data; (iv) IOAM data fields are defined in a generic way
so that they are independent from the protocol that carries
them; (v) finally, IOAM offers the ability to actively process
information in the packet. For instance, IOAM allows one to
prove in a cryptographically secure way that a packet really
followed a pre-defined path using a traffic steering method,
such as service chaining (e.g., NFV service chaining) or traf-
fic engineering (e.g., through Segment Routing [9]).

In a nutshell, IOAM gathers telemetry and operational in-
formation along a path, within packets, as part of an exist-
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Figure 1: High-level view of IOAM

ing (possibly additional) header, as shown in Fig. 1. It is
encapsulated in IPV6 packets as an IPv6 HopByHop exten-
sion header [6, 1]. Typically, IOAM is deployed in a given
domain, between the INGRESS and the EGRESS or between
selected devices within the domain. Each node involved in
IOAM may insert, remove, or update the extension header.
IOAM data is added to a packet upon entering the domain and
is removed from the packet when exiting the domain. There
exist four IOAM types for which different IOAM data fields
are defined. (i) the Pre-allocated Trace Option, where space
for IOAM data is pre-allocated; (ii) the Incremental Trace
Option, where nothing is pre-allocated and each node adds
IOAM data while expanding the packet as well; (iii) the Proof
of Transit (POT) and, (iv) the Edge-to-Edge (E2E) Option.
Trace and POT options are both embedded in a HopByHop
extension header, meaning they are processed by every node
on the path, while E2E option is embedded in a Destination
extension header, which means it is only processed by the
destination node.

IOAM data fields are defined within IOAM namespaces,
that are identified by a 16-bit identifier. They allow devices
that are IOAM capable to determine, for example, whether
IOAM option header(s) need to be processed, which IOAM
option headers need to be processed/updated in case of multi-
ple IOAM option headers, or whether IOAM option header(s)
should be removed. IOAM namespaces can be used by an op-
erator to distinguish different operational domains. Devices
at domain boundaries can filter on namespaces to provide for
proper IOAM domain isolation. They also provide additional



Figure 2: Failure Detection with IOAM.

context for IOAM data fields, ensuring IOAM data is unique,
as well as allowing to identify different sets of devices.

Traditionally to detect and isolate network faults, ping
and traceroute, or even bidirectional forwarding detec-
tion (BFD) [10], are used. But in a complex network with
large number of U/E-CMP being available, it would be diffi-
cult to detect and isolate them. Also detecting loss/reorder-
ing/duplication of packets becomes much harder. Currently,
failure detection takes ten of seconds in large networks, while
failure isolation (using ping and traceroute) takes sev-
eral minutes [8, 7]. Indeed, probing based on traceroute
is slow. Therefore, the objective is to significantly improve
failure detection and isolation through efficient network prob-
ing, specially for hyper giant distribution networks (HGDNs,
such as Facebook, Google, or Netflix) and large data center
networks (DCNs).

This is exactly a context in which an active network prob-
ing relying upon UDP probes with IOAM can find a suitable
usage. If one encounters connectivity issues between individ-
ual nodes, then IOAM tracing could be enabled between those
nodes to understand where things are going wrong. This is of
particular benefit, specially when HGDNs and DCNs make
use of equal-cost multipath (ECMP).

With IOAM, one can identify the exact path, something
which is really hard to do with standard traceroute. By
using the IOAM loopback flag, an issue can be identified
within a single packet RTT, as illustrated in Fig. 2. Addi-
tional use cases for IOAM are m-anycast service (intelligent
micro-service selection and load-balancing) [5], service and
quality assurance (proving the traffic follows a pre-defined
path through POT), or high precision congestion control [12].

In this paper, we provide the first implementation of IPV6
IOAM inside the Linux kernel. This implementation is impor-
tant as it provides to operators and IETF an insight into IOAM
practical aspects. In addition, IOAM can complement Layer5-
7 tracing solutions such as OpenTelemetry [14] to create a
comprehensive Layer2-7 tracing solution.

This paper describes our implementation1 inside the Linux
kernel version 4.12. We designed our implementation to be
as efficient as possible, through a new kernel module. This
paper also discusses early performance results of our IOAM
implementation. In particular, we show that inserting IOAM
headers and data may reduce the bandwidth capabilities of

1Our implementation is available as open source under the terms
of the GNU General Public License version 2 (GPL-2.0). See
https://github.com/IurmanJ/kernel_ipv6_ioam

struct ioam_node {

__u32 ioam_node_id; //IOAM node identifier

unsigned int if_nb; //number of IOAM interfaces

unsigned int ns_nb; //number of known IOAM namespaces

unsigned int encap_nb; //number of IOAM insertions

unsigned int encap_freq; //frequency of IOAM insertions

struct ioam_interface ifs[IOAM_MAX_IF_NB];

struct ioam_namespace nss[IOAM_MAX_NS_NB];

struct ioam_encapsulate encaps[IOAM_MAX_NS_NB];

};

Figure 3: IOAM node registration structure.

an IOAM domain but could also stay efficient thanks to some
measured compromises. The additional delay introduced by
IOAM processing is therefore quite reasonable.

Linux-Kernel Implementation
In this section, we carefully describe how we have im-

plemented IOAM within the Linux kernel 4.12.1 We first
cover the IOAM node registration step as well as any IOAM
resources allocation. We next explain how packet parsing
can be done efficiently for IPv6 Extension Headers.
We finally focus on how IOAM headers are inserted and re-
moved from packets. Our implementation is based on IOAM
drafts [1, 3], respectively versions 02 and 06.

User Space API
The registration process is required for a node to enable

IOAM. As long as it is not the case, the node will drop any-
thing that is IOAM related. For that purpose, a new ioctl
has been created. In order to fit in the kernel code, we pro-
vide a uapi (user space API) to facilitate the ioctl call.
This also eases the registration process from a user point of
view. Indeed, as a good practice, everything inside the uapi
has been documented, since it is what users can see and in-
clude in their programs. Important note: in the subsequent
versions, the ioctl call will be replaced and we will use
genetlink and rtnetlink instead, as we do believe that
it would ease the acceptance of the code inside the kernel as
well as being more appropriate. Fig. 3 shows the main struc-
ture of the IOAM uapi.

The list of IOAM interfaces (ifs) contains a mapping be-
tween a device and its IOAM identifier chosen by the operator,
as well as its IOAM role∈ {none, ingress, egress}. A none
role means that the interface is an IOAM domain bound-
ary not allowing incoming IOAM traffic (default role), while
ingress and egress respectively mean that the interface
allows for incoming and outgoing IOAM traffic. An IOAM in-
terface can play the role of both ingress and egress at
the same time. If an IOAM interface owns the egress role,
the operator must also specify an IPv6 address being the tun-
nel destination. Indeed, as RFC 8200[6] does not allow for
in-flight insertion/removal of extension headers, we must cre-
ate a tunnel (IPV6-IN-IPV6) when the traffic is coming from
outside in order to insert IOAM headers. The list of IOAM
namespaces (nss) represents all namespaces known by the
node and contains per-namespace data such as its identifier,
as well as whether it should be removed by the node or not. A



Figure 4: IOAM buffer representing an IPv6 Extension
Header.

node will ignore IOAM data from an unknown IOAM names-
pace. Be careful not to mix the notion of IOAM namespaces
and Linux namespaces, as they are totally different and un-
related. Note that this implementation is Linux namespaces
compliant. The list of IOAM insertions (encaps) contains
IOAM data that should be inserted in packets, along with their
IOAM namespace identifier and the egress IOAM interface.
The same namespace identifier can be inserted multiple times,
for different IOAM options, as well as several IOAM options
in the same namespace.

This structure provides a complete configuration of an
IOAM node and allows for strict filtering due to IOAM inter-
face roles and IOAM egress interfaces when inserting IOAM
headers. The operator has all the possibilities, such as config-
uring overlapping IOAM namespaces, unidirectional, or bidi-
rectional IOAM flows.

Node Registration

Calling the ioctl starts several steps. First, the IOAM
kernel module parses and validates data. Then, it builds inter-
nal structures based on received data and every single IOAM
resource is allocated per kernel network namespace. The
main goal is to design a solution to allocate any resources
needed by IOAM, at registration time, in order to keep packet
processing as fast as possible.

The very first important resource to store is the list of
known IOAM namespaces, at node level, as all interfaces must
be able to access it. Since the IOAM namespace lookup oc-
curs each time a packet with IOAM data is processed, a ker-
nel hashtable, with the IOAM namespace identifier as the key,
has been used for that purpose. The trade-off is to find a bal-
ance between potential collisions and memory allocation. We
achieve this by forcing the hashtable size being four times
the maximum number of allowed IOAM namespaces. In the
near future, we will investigate the pros and cons of replac-
ing fixed-size by dynamic size hashtables. The IOAM node
identifier is also stored along with the hashtable, as well as
pre-allocated paddings to speed up IOAM options alignment
(see Sec. “Header Insertion”).

The other important resource to store is an optimized buffer
that represents an Extension Header with IOAM (either
a Hop-by-Hop or Destination option) to be inserted,
built from registration data. Fig. 4 illustrates how the buffer
is structured and how it works (more details on this buffer in
Sec. “Header Insertion”). It is allocated twice per IOAM en-
cap interface, one for a Hop-by-Hop option and another for
a Destination option. The IOAM identifier, role, counter
for frequency insertions, and the tunnel destination are also
stored per interface.

struct ioam_parsed_eh {

u16 size; //extension header size

u8 pad_size; //total EH padding size

u16 decap_size; //total size of IOAM data to remove

u8 free_idx;

struct ioam_block decaps[IOAM_MAX_NS_NB];

};

Figure 5: Structure with additional data for an Extension
Header parsing.

EH Parsing
IPv6 Extension Headers already come with pars-

ing mechanisms inside the kernel based on RFC8200 [6].
However, for speeding up as much as possible the IOAM
header decapsulation process, we need to store addi-
tional information. This is the objective pursued by the
ioam_parsed_eh structure (see Fig. 5). It helps to easily
remove IOAM from packets, while remaining efficient. The
usefulness of each field will be detailed in Sec. “Header Re-
moval”.

The field decaps represents the list of {offset, size}
IOAM blocks to be removed, with free_idx giving the very
next free slot in the array, as well as the number of IOAM
namespaces to be removed. Having a fixed-size array is a
choice we made to avoid allocation during critical process-
ing. Note that defined boundaries in the IOAM user space
API are realistic and as such are not a problematic limit.

As the IOAM header decapsulation process needs this data,
we must store the structure while keeping in mind the main
goal of avoiding any allocation. Initially, we were storing
the structure per network devices (struct net_device),
where it was pre-allocated at the registration. However, we
found out that packet queues were multi-threaded in the ker-
nel, which prevented this solution from working. Ideally, the
structure should follow its specific packet, just like if it was
attached to it, but that would also mean an allocation during
packet processing. We started to look inside the sk_buff
structure that represents a network packet, and discovered
that a private user data space was available. This field is called
the control buffer (cb) and is said to be free to be used
by every layer, where one can put private variables there. But
the current layer, IPV6, already uses this field for storing an
internal structure (inet6_skb_parm). Finally, in order to
integrate IOAM as efficiently as possible within the kernel, we
decided to store a pointer to ioam_parsed_eh inside cb.
It means less memory to allocate per packet (four or eight
octets, depending on the architecture), which is critical, espe-
cially when this additional field aims at being used “locally”.
A concrete and simplified example of how it works is shown
in Fig. 6. Thanks to this technique, we first respect our ob-
jective to not allocate anything during packet processing and,
secondly, multi-threaded packet queues are now supported.

Header Insertion
The IOAM header insertion process happens at the output,

which makes sense from a semantic point of view. Here,
two different scenarios are possible. Note that, in both cases,



struct ioam_parsed_eh parsed_eh;

//Init parsed_eh fields before parsing

IP6CB(skb)->ioam = &parsed_eh;

if (ip6_parse_tlv(skb)){

//decap, if any, based on parsed_eh

}

Figure 6: Simplified example of IPV6 input for a Hop-by-
Hop.

IOAM will not be added in a packet if the new size is big-
ger than the MTU. Important note: we plan to use the
lightweight tunnels API available in the kernel to handle this
more cleanly.

The first scenario applies to traffic generated by the node
itself. In that case, IOAM headers are directly inserted.
Note that it is only true when there is no Hop-by-Hop or
Destination option already present in a packet. The ob-
vious reason for such a restriction is to not play and slow
down sensitive packets such as Router Alert. Therefore,
we simply insert the entire buffer shown in Fig. 4, right af-
ter the IPv6 header. The first two octets represent the EH
header, while the two next octets are padding. Indeed, IOAM
options require a 4n alignment [1, 3], which is specified us-
ing the notation xn + y, meaning the Option Type must
appear at an integer multiple of x octets from the start of the
EH header, plus y octets. Following that, each IOAM option is
inserted, as well as a tail padding such that the complete EH
length is an integer multiple of 8 octets [6].

The second scenario applies to in-transit traffic. In that
case, IOAM headers are encapsulated (IPv6-in-IPv6
tunnel) to make sure it is compliant with RFC 8200.
Therefore, we again insert the entire buffer shown in Fig. 4,
this time before the IPV6 header which becomes an inner
header. A similar IPV6 header is added in front of the buffer
so that the encapsulation is complete. The tunnel destination
is another node inside the IOAM domain. Note that it is hard
to find a suitable solution for overlapping and/or nested IOAM
namespaces (aka tunnels). Indeed, we recommend operators
to only use a single encapsulation from domain border to do-
main border, if possible, to avoid inner IOAM headers being
ignored and/or leaked out.

The strength of this algorithm is that it covers both scenar-
ios, which makes the specific host-to-host use case possible.
Also, it does not require any allocation, as buffers are already
allocated and filled at registration time. However, an implicit
allocation could occur if the required extra space is bigger
than the free space in the packet buffer. A solution would
be to increase the needed_headroom field of each IOAM
encap interface (struct net_device) to allocate a bit
more for each packet and as such avoid this situation. Again,
this is a trade-off between memory and performance and the
choice is up to the operator.

Data Insertion
The insertion of IOAM data is only applied by a node if

the input interface has an IOAM ingress role and if the

IOAM namespace is known. The latter requires a lookup in-
side the hashtable containing all known IOAM namespaces by
the node. If those conditions are respected, the node inserts
its data, depending on what data was required.

Note that IOAM data insertion not only happens when re-
ceiving a packet with IOAM but also after IOAM header in-
sertion (see Sec. “Header Insertion”). Indeed, for the latter,
a node that adds IOAM headers inside a packet (either by in-
serting or encapsulating them), must insert its IOAM data too.

Header Removal
The IOAM header removal process is only applied on

Hop-by-Hop options when the node is not the destination.
Indeed, removing IOAM headers when the node is the des-
tination (Hop-by-Hop or Destination option) would
cause an additional and unnecessary workload. This process
becomes straightforward thanks to data provided by the im-
proved parsing. We know the total size of IOAM data blocks
to be removed as well as their respective positions and sizes,
as shown in Fig. 5. One can distinguish two different cases.

The first and fastest case is when the entire Extension
Header should be removed. It is possible to quickly check
that since we know the size of data to be removed, as well as
the total padding size and the Extension Header size. If
decap_size + pad_size == EH.size − 2, then the
entire Extension Header should be removed (minus 2
to not take the header into account). Right now, this is how
it is implemented. However, still trying to be compliant with
RFC 8200, we wonder if it would not be a better choice to
have an “empty” Extension Header instead of remov-
ing it altogether, though this could sound crazy.

For the other case, it will omit IOAM blocks that must be
removed while shifting and copying data back, and append
tail padding if needed to keep alignment.

To remain effective, options are not reordered. As such, the
arrangement may not be optimal. However, we can’t assume
that options after the removed one, if any, are still aligned.
Therefore, we need to merge possible padding before and af-
ter the removed option into an accurate padding, so that the
alignment is respected. But this is not enough because next
options, if any, could still be misaligned. Let’s assume the fol-
lowing alignment requirements 2n, 4n, and 8n respectively
for options X, Y, and Z. The example shown in Fig. 7 would
work, which is not true for the other shown in Fig. 8. Indeed,
after the removal, the option Z will no longer be aligned on
an 8-octet boundary. In this case, knowing the alignment of
the very next option after the removed one wouldn’t help. We
would also need to know the alignment of any next options
and try to realign everything option by option, which is not
acceptable from a performance point of view. Instead, a good
compromise that works for all cases is to automatically as-
sume an 8-octet boundary. As a result, unnecessary padding
could be introduced (4 octets at most), which is acceptable.

Evaluation
In this section, we make a first attempt at evaluating IOAM

performances inside the Linux kernel. We first present our
testbed and, then, discuss our results.



Figure 7: Option removal, valid scenario for alignment.

Figure 8: Option removal, invalid scenario for alignment

Testbed and Measurement Methodology
Fig. 9 shows the testbed we built for IOAM performance

evaluation. It is made of five machines, three of them play-
ing the role of the IOAM domain. The remaining two are
respectively positioned on each side of the IOAM domain to
send and receive traffic. Each machine, configured to max-
imize its performance (e.g., maximum CPU frequency), is
directly connected to its peers and is equipped with Intel
XL710 2x40GB QSFP+ NICs having Receive-Side Scaling
(RSS) enabled and firmware up-to-date, as well as the latest
i40e driver. Gimli, the traffic generator, is based on Intel
Xeon CPU E5-2683 v4 at 2.10GHz, 16 Cores, 32 Threads,
64GB RAM. Merry and Pippin, the two IOAM domain
boundaries, are both based on Intel Xeon CPU E5-2630 v3 at
2.40GHz, 8 Cores, 16 Threads, 64GB RAM. Their purpose
are respectively to encapsulate and decapsulate IOAM head-
ers as well as inserting their IOAM data. Sam is based on In-
tel Xeon CPU E5-2630 v3 at 2.40GHz, 8 Cores, 16 Threads,
32GB RAM. Its sole purpose is to insert its IOAM data. As
for Legolas, the receiver, it is based on Intel Xeon CPU E5-
2620 v4 at 2.10GHz, 16 Cores, 32 Threads, 128GB RAM.

In order to send traffic at line rate (40 Gbps), we use
pktgen [11] which is an alternative tool included in the ker-
nel that bypasses the Linux kernel network stack by gener-
ating packets directly on top of the device driver in kernel
space. Indeed, reaching line rate with userspace tools like
iperf3 can be painful. For instance, with the latter, we
reached ~37 Gbps, at best, while we managed to constantly
send more than 39 Gbps with pktgen. Even if pktgen
is only able to generate UDP packets, we are fine with it as
we want to measure the additional processing overhead intro-
duced by IOAM. We also use dstat [17] on each machine
to log RX and TX every seconds.

Each experiment lasts 30 seconds and is run 20 times. We
determine 95% confidence intervals for the mean based on
the Student t distribution. However, as they are too tight to
appear on the plots, we took them off. For each experiment,
there are two sub-experiments, one for the traffic involving
78-byte packets and another for 1236-byte packets. The rea-

Figure 9: Topology used for measurements.
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Figure 10: Baseline throughput comparison.

son for this is to measure the IOAM processing overhead for
both MTU-sized and very small packets, with the latter being
useful to show some additional load brought by IOAM that
the former may not reveal. For MTU-sized packets, we chose
1,236 bytes because the maximum IOAM overhead for all of
our tests is 264 bytes, which gives 1,500 bytes (default MTU).
Indeed, having a common base allows us to equally compare
each experiment and measure the same thing all along. For
small packets, we use 78 bytes as this is the shortest that
pktgen can send: 14 bytes for Ethernet, 40 bytes for IPv6,
8 bytes for UDP, and 16 bytes for pktgen. Each plot in the
next subsection provides results in Mpps (Million Packets Per
Second).

Results
We first examine the throughput baseline on a vanilla ker-

nel 4.12, and compare it to the same kernel patched with
IOAM. For the latter, we distinguish two cases. Firstly, IOAM
without registration, meaning that IOAM was compiled and
included in the kernel but disabled. The goal is to measure
the impact of the patch being totally passive. Secondly IOAM
with registration, meaning that not only IOAM was compiled
and included in the kernel but is also enabled. For the latter,
we consider the base case with the encapsulation of a sin-
gle IOAM namespace containing a single IOAM trace option,
leading to an overhead of 72 bytes per packet in total. Fig. 10
shows the results for 78-byte (blue bar) and 1236-byte (red
bar) packets. For both cases, there is no decrease between a
vanilla kernel and the patched IOAM kernel with IOAM dis-
abled. We see that line rate is sustained with 1236-byte pack-
ets while ~6,400,000 pps is the upper limit the kernel can
handle for 78-byte packets. Indeed, the smaller the packets
the more processing for the kernel. Unsurprisingly, the loss
comes with IOAM enabled. For 1236-byte packets, we lose
~400.000 pps (~4 Gbps), which represents a loss of 10%.
As for 78-byte packets, we lose ~2.600.000 pps (~1.5 Gbps),
which represents a loss of 40%. The latter gives more packet
loss but involves smaller packets. However, the “IOAM en-
abled” experiment is quite unrealistic. This is explained in
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Figure 11: Frequency of IOAM insertion.

ioam_pkt_size = pkt_size + ioam_overhead

pps = (bytes * (1 / frequency) / ioam_pkt_size)

+ (((bytes * (frequency - 1)) / frequency) / pkt_size)

Figure 12: PPS estimation based on the IOAM frequency of
insertion

the next experiment.
IOAM aims at inserting telemetry data within IPV6 pack-

ets. We now investigate the impact of this insertion pro-
cess, as a fraction of IPV6 packets. In particular, we insert
IOAM data in IPV6 packets for 0.01%, 0.1%, 1%, 2%, 5%,
10%, 25%, 50% and 100% (i.e., IOAM data is injected in ev-
ery packet) of traffic traversing the IOAM domain. Here, we
consider again the base case with the encapsulation of a sin-
gle IOAM namespace containing a single IOAM trace option,
which gives an overhead of 72 bytes per packet in total. Pack-
ets per second are estimated, from bytes per second obtained
during measurements, with the formula provided in Fig. 12.
This is based on the frequency of IOAM insertion in order to
respect the proportion of the traffic, making a difference be-
tween packets with or without IOAM inside.

Fig. 11a shows for 1236-byte packets that line rate is sus-
tained until 10% of insertions. It then slowly starts to drop for
higher frequency of insertions. Overall, one can see that only
a full insertion (100%) gives a noticeable difference. From
0.01% (which is almost the same as “no insertion”) to 100%
of insertions, we logically observe the same loss as for previ-
ous experiment which is one-tenth of the traffic. The equiv-
alent result for 78-byte packets is illustrated in Fig. 11b and
shows also the same loss of 40% as previously. As stated in
the previous experiment, the “100% IOAM insertion” case is
unrealistic. From those results, we expect operators to not in-
sert telemetry data in every packet traversing their domain as
the data processing load would quickly become unmanage-
able. We rather expect IOAM to be applied on a tiny portion
of the traffic or for very specific and limited use cases, which
is the purpose of IOAM, corresponding so to no more than
10% or 25%. In such a case, the impact on the IOAM domain
throughput is quite limited. On top of that, one could also
imagine having a dynamic threshold to insert IOAM depend-
ing on the current throughput and packet sizes.

Now that we have an idea of the impact of IOAM data inser-
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Figure 13: Number of IOAM trace options.
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Figure 14: Number of IOAM namespaces.

tion, let us have a look on the impact of increasing the number
of IOAM options and the number of IOAM namespaces. The
next two experiments not only compare the impact of IOAM
overhead but also some additional processing depending on
the case, which is explained below. All those experiments
allow us to determine a good compromise between the fre-
quency of insertion, the number of options, and the number
of namespaces, to keep this process as efficient as possible.

Fig. 13 shows the results of increasing the number of
options, respectively for 1236-byte (Fig. 13a) and 78-byte
(Fig. 13b) packets. We insert 1→ 9 options in every packets,
inside a single IOAM namespace, which corresponds to the
extreme (and worst) case discussed previously. Those options
can have different sizes and give the following overhead: 72
bytes, 80 bytes, 96 bytes, 104 bytes, 120 bytes, 128 bytes,
152 bytes, 176 bytes, and 200 bytes. This includes the outer
IPV6 header as well as the IOAM overhead (Hop-by-hop con-
taining 1→ 9 options for three hops, and padding). The same
behavior is observed on both figures, which is stable until
the ninth option on Merry. We do believe that this is due
to the fact that the socket buffer has no free room enough
during encapsulation. Therefore, it requires a re-allocation
of extra space by the kernel to be able to deal with the en-
tire IOAM data. This is something we can not avoid. How-
ever, we could give the operator the possibility to increase
skb->needed_headroom to reduce the re-allocation. Be
aware that this is again a trade-off between memory and per-
formance. Note that we do not have a strong explanation
about the drop on Sam for the ninth option.



Fig. 14 shows the results of increasing the number of
namespaces, respectively for 1236-byte (Fig. 14a) and 78-
byte (Fig. 14b) packets. We insert 1 → 9 namespaces in
every packets, each containing a single IOAM option, which
gives the following overhead: 72 bytes, 96 bytes, 120 bytes,
144 bytes, 168 bytes, 192 bytes, 216 bytes, 240 bytes, and
264 bytes. This includes the outer IPV6 header as well as
the IOAM overhead (Hop-by-hop containing 1 → 9 names-
paces with a single option for three hops, and padding). The
same behavior is observed on both figures, i.e., performance
stability until five namespaces on Merry. In the fashion of
previous experiment, we also exceed the free room in socket
buffers. We observe a huge drop on Sam for 7, 8, and 9
namespaces. This can be explained by the fact that, in the
IOAM dataplane, a namespace requires a lookup to check if
it is known or not. Therefore, having a lot of namespaces
per packet triggers multiple lookups. However, we do not
think this is the only cause, as the hashtable is four or more
times bigger than the maximum number of allowed names-
paces, which reduces collisions. Except if the hash algorithm
is weak, we should not observe such a high drop. Indeed,
we see that it corresponds to the same drop on Sam for previ-
ous experiment, which happens with an approximatively 200-
byte overhead. High is the chance that this is not a coinci-
dence and there is also something else going on. This will be
investigated deeper in the near future.

As an all-in-one example, we try a good compromise in a
more realistic situation. This time, we use 800-byte packets
which is approximatively the mean of our sub-experiments
but could also well be the average size of, for instance, HTTP
packets. The frequency of injections is 5%, with 5 names-
paces each containing 3 options. While the same use case
with a 100% frequency of injections would be too much, here
we observe a loss of ~1.000.000 pps (~6.4 Gbps) from one
end of the topology to the other, which represents ~16% of
the traffic (~38.5 Gbps). Again, the use of IOAM may be spe-
cific to each, depending on the goal and conditions at a pre-
cise moment. It’s up to operators to choose what suits them
best.

All of those measurements are focused on the encapsula-
tion use case. However, the encapsulation and direct inser-
tion use cases are not so different. Indeed, the main differ-
ence between them is that, for the latter, it requires a bit more
processing as the IPv6 header needs to be shifted in order to
include the new Hop-by-hop containing IOAM headers. This
is slower than the encapsulation process but it could also be
faster if no re-allocation happens, which may be the case be-
cause fewer bytes are inserted.

Next Steps

The availability of IOAM inside the Linux Kernel source
tree would be a huge asset. To this end, we will improve
the current implementation in order for it to be accepted and
merged. In parallel, now that IOAM works inside the Linux
Kernel, we have already started combining LAYER5-7 trac-
ing (OpenTelemetry) with IOAM tracing at network level, so
that we end up with a complete LAYER2-7 tracing solution.

Conclusion
In-situ OAM (IOAM) allows operators, in a pre-defined do-

main, to insert telemetry data within packets without inject-
ing additional traffic for measurements. As such, it has the
potential to enhance operations. IOAM is still in its infancy as
it is currently under standardization by the IETF. This paper
reports what is, to the best of our knowledge, the very first im-
plementation of IOAM for IPV6 in the Linux kernel1 as well
as early results on IOAM performance. We hope that our im-
plementation supports IOAM standardization, drives adoption
of IOAM as well as associated research. The current imple-
mentation will be improved in order to be merged inside the
kernel. With the availability of IOAM for the Linux Kernel,
we are now already evolving to a comprehensive tracing so-
lution combining LAYER5-7 tracing (OpenTelemetry) with
IOAM tracing at network level.
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