

Hierarchical QoS Hardware Offload (HTB)

Yossi Kuperman, Maxim Mikityanskiy, Rony Efraim

Mellanox Technologies Ltd.
Yokneam, Israel

{yossiku,maximmi,ronye}@mellanox.com

Abstract

Traffic shaping is essential to a correct and efficient operation of
datacenters. To name a few examples, policy-based bandwidth
allocation to a group of flows, and packet pacing to reduce traffic
burstiness that can overwhelm router buffers. As network
bandwidth demand increases so does the number of classified
flows, exposing scalability limits of the HTB implementation.
 HTB is quite flexible and versatile, but it comes with a cost.
HTB does not scale (due to a single lock) and consumes
considerable CPU and memory. In our proposed solution,
classification takes place in software, whereas rate-limiting is done
by the hardware. By moving the classification to clsact egress
hook, which is thread-safe and does not require locking, we avoid
the contention induced by the single qdisc lock. Furthermore,
offloading the shaping logic and the maintenance of the intra-class
bookkeeping into the hardware, completely removes the need for
data-path synchronization. Our aim is to offload HTB
functionally to hardware, providing the user with the flexibility and
the conventional tools offered by TC subsystem while scaling to
thousands of traffic classes and maintaining wire-speed
performance.

Keywords
Linux, queuing disciplines (qdisc), quality of service (QoS),
hierarchical token bucket (HTB), network offload

 Introduction
Traffic shaping is required for efficient operation of
production networks. However, it uses CPU cycles on data-
center servers that can otherwise be used for running user
applications.

HTB queueing discipline (qdisc) allows the use of a
physical link to simulate several slower links---represented
by classes. This is done by configuring a hierarchical QoS
tree. Each tree node corresponds to a class; there are inner
classes and leaf classes. Inner classes represent the
hierarchal structure and the borrowing relationships; traffic
shaping takes place at the leaf classes. Filters are used to
classify flows to the different classes.

HTB is quite flexible and versatile, but it comes with a
cost. HTB does not scale properly and consumes valuable
CPU cycles to implement traffic shaping. We aim to offload
HTB functionally to hardware and provide the user with the
flexibility offered by the HTB qdisc, while maintaining
wire-speed performance.

Hardware Model
Mellanox hardware, more specifically, ConnectX-5 and
upwards, provides a hierarchical quality of service offload
capability. The firmware provides a mechanism to configure
a QoS tree, where the leaf nodes are exposed to the driver
through send queues (SQ). This SQ is a hardware queue with
FIFO semantics. The hardware schedules the SQs according
to their configured rate-limit. Rate-limiting is enforced by a
token bucket shaper. The hierarchy is for borrowing
between leaf nodes with a common parent.
 The aforementioned description bears a resemblance to
Linux’s HTB queueing discipline. Note that flow
classification still takes place in software. TC egress hook
(clsact) is used to classify outgoing packets into one of
several traffic classes, each is associated with a SQ, as
depicted in Figure 1.

Figure 1 Hierarchical QoS Tree Example

HTB

Driver

ConnectX-5

B

Link

A

WWW SMTP B

TX

SMTP WWW

DWRR

DWRR

Stack TX TX

SQ SQ SQ

Our Proposed Design
We would like to enhance the HTB qdisc to support offload.
HTB provides us with the common tools to configure the
desired QoS tree.

The most concerning aspect of the current HTB
implementation is its lack of support for multi-queue. All
TX queues of a netdevice point to the same HTB instance,
resulting in high spin-lock contention. This contention
(might) negates the overall performance gains expected by
introducing the offload in the first place.

For each HTB leaf-class the driver will allocate a special
send queue (SQ) and match it with a corresponding net-
device TX queue. A unique FIFO qdisc will be attached to
any such TX queue. Classification will still take place in
software, but rather at the clsact egress hook. Once a packet
is classified it will be directed to the corresponding TX/SQ
that will do traffic shaping in hardware.

The rest of this section covers the relevant components
we need to tackle in order to support HTB hardware offload.

Making HTB a Multi-Queue Qdisc
We should modify HTB to present itself as mq qdisc does.
By default, mq qdisc allocates a pfifo qdisc (packet limited
first in, first out queue) per TX queue exposed by the lower
layer device. This only occurs when hardware offload is
configured, otherwise, HTB behaves as usual. There is no
HTB code along the data-path; the only overhead compared
to regular traffic is the classification taking place at clsact.

HTB will notify the driver of its existence by means of
.ndo_setup_tc().

This design induces full offload---no fallback to
software. It is not trivial to partially offload the hierarchical
tree considering borrowing between siblings anyway.

Create/Destroy New Traffic Class
Upon a new class creation/destruction, HTB will notify the
driver using .ndo_setup_tc(). This way the user builds the
QoS hierarchal tree; the driver should configure the
hardware to mirror this tree.

Each leaf class is represented by a netdev TX queue, and
each TX queue is backed by a special hardware send-queue
(SQ). However, it might be challenging to create a TX queue
on-the-fly by the driver. One possible way to circumvent this
is to pre-allocate TX queues at the driver initialization. Upon
a new class creation, the driver will allocate an SQ with the
appropriate configuration and assign it to an empty TX
queue. New TX queues are allocated by increasing the
number of ‘real’ TX queues (real_num_tx_queues). While
HTB is configured and offloaded, we should prohibit the
user from manually changing the number of channels (e.g.,
ethtool -L).

Note: we do not know in advance which class is inner
and which is a leaf; it is up to the driver implementation to
handle it properly.

Packet Classification
HTB uses filters to classify packets to classes. Usually,
filters are applied to the HTB qdisc. However, the selection
of the TX queue occurs prior to the HTB classification. In
order to derive the TX queue from the class we ought to
perform the classification before TX queue is determined.
 We can use clsact anchor point (fake qdisc), which
happens before the TX queue selection, to perform the
classification. HTB skips the classification if the “priority”
field of the sk_buff structure, which is treated as classid,
resolves to an existing class. We can slightly change the
usual way filters are configured to HTB with equivalent
filters using skbedit action as follows:

The classification done at the clsact egress point is lock-free,
and thus being performed concurrently, whereas, HTB
performs all the classifications under the same qdisc lock.

HTB supports hierarchical classes and each inner class
can have filters attached. This provides the user the
flexibility of configuring different layers of filters, for
example, at the top class the user can classify by container-
id and more specific classification will take place at inner
classes. We lose this ability when using clsact. However, we
can simulate multiple layers by different TC chains.

TX Queue Selection
Classification outcome is stored in sk_buff’s “priority”
field. The network stack gives the driver a chance to select
the TX queue by means of .ndo_select_queue(). The driver
should know that HTB is configured and must use the
“priority” as a hint. It is the driver responsibility to maintain
a mapping between classes and TX queues. The driver
translates class to TX queue and returns it to the network
stack.

HTB uses an internal queue denoted by htb-direct.
Packets are first drained from this queue; no QoS is applied
to this queue. HTB enqueue packets to this internal queue
when classification fails, or the chosen class is the handle of
the root qdisc. We can provide similar behavior by selecting
the classic TX queues that do not perform any QoS.

HTB Statistics
We should properly handle statistics request from the user.
Upon such request, HTB qdisc must delegate the request to
the driver. The driver will then inquire the firmware for the
statistics per class.

$ tc qdisc add dev eth0 clsact
$ tc filter add dev eth0 egress protocol ip flower dst_port
80 action skbedit priority 1:10

References
[1] Daniel Borkmann. net, sched: add clsact qdisc
https://lwn.net/Articles/671458/

[2] HTB - Hierarchy Token Bucket
https://linux.die.net/man/8/tc-htb

[3] Jamal Hadi Salim, Linux Traffic Control ClassifierAction
Subsystem Architecture, Proceedings of Netdev
0.1, Feb 2015

[4] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh
The Lam, Carlo Contavalli, and Amin Vahdat. Carousel: Scalable
traffic shaping at end hosts. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication,
SIGCOMM ’17. ACM, 2017

