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XDP and the Cloud
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Scope of Tutorial

● Hypervisor networking 
○ Move packets from network to 

VM and VM to network as fast 
as possible 

● XDP for moving packets 
○ co-exists with full stack  
○ gotchas 

● What is needed to use XDP in VMs
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Packet Processing with XDP

● Bypasses skb allocations and host networking stack (e.g., bridge) 

● Can have a similar XDP program on the tap device to redirect to the 
egress NIC 

● HOW the redirect decision is made is up to the ebpf program 
○ L2 / FDB lookup - tap into bridge fdb (need bpf helper) 
○ L3 / FIB lookup - existing fib_lookup helper 
○ Map with static <dmac,vlan> to next device mapping 

■ This tutorial focuses on this option 

● Per-packet and per-VM decision 

● XDP programs can also do packet validations (VMs are untrusted), ACLs 
and crude bandwidth limiting
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Host Setup

● v5.8 kernel, Ubuntu 18.04 OS 

● Mellanox ConnectX-4 Lx NIC (25G) using mlx5 driver 
● Typical host networking configuration 

○ NIC ports into 802.3ad (LACP) bond 
○ L3+L4 hash for Tx 
○ OVS bridge 

● VM can be on one or more networks 
○ e.g., Public, private 
○ VLANs for network separation - invisible to the VM 

● VM networking is tap + vhost
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VM Networking

● Directions for tap device: 
○ Tx = Packets to the VM 
○ Rx = Packets from the 

VM 

● XDP on tap device means 
processing packets egressing 
a VM
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Host Ingress Traffic



digitalocean.com

Layer 2 Forwarding in XDP 

● Layer 2 forwarding program on 
ingress NICs 

● Very simple virtual switch 
○ Pulls vlan, dest mac from 

ethernet header 
○ Looks up next device for 

packet 
● FDB map 

○ key: <vlan, dest mac> 
○ value: device index 

● Ports map
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Layer 2 Forwarding in XDP 

● Basic Premise: 
○ Known traffic takes the fast 

path (XDP) 
○ BUM traffic uses full stack 

● "Known traffic" defined as entry 
exists in FDB map 

● Goal is for 90+% of traffic to take 
the fast path

eth0

eth0 eth1

tap

host

eth0

tap

eth0

tap

bond0

VM VM VM

fdb

ebpfebpf

ports br0 host stack



digitalocean.com

FDB as a Hash Map

● Hash Map (BPF_MAP_TYPE_HASH) 

● MAC addresses are relative to a VLAN 
○ Key: <vlan, mac> 
○ Value: index 

● Userspace updates FDB map as VMs start and stop 
○ e.g., hypervisor agent or control script
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Device Map - BPF_MAP_TYPE_DEVMAP

● XDP_REDIRECT requires next device for packet 
○ Best performance requires use of bpf_redirect_map() 

● DEVMAP is a pointer to netdevices 

● Simplest design is for DEVMAP index == netdevice index 
○ FDB lookup returns device index 

● Map sizes declared up front - at load time 
○ tap device index can grow over time 

● Better approach is for FDB lookup to return index into DEVMAP 
○ Needs coordination between maps
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Device Map - BPF_MAP_TYPE_DEVMAP_HASH

● New in v5.4 

● Avoids the need to manage mappings between fdb and dev maps 
○ Map index can be device index regardless of device index value 

and size of map
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device index device<vlan,mac>
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Redirect with Kernel v5.6

● v5.6 performance of bpf_redirect is on par with map variant 
○ No need for port map - or coordination between maps 
○ FDB lookup can return tap device index 
○ Loss of direct error reporting
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Layer 2 Forwarding in XDP  

● https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_l2fwd.c 

● Very simple virtual switch like processing

https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_l2fwd.c
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_l2fwd.c
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XDP and VLANs

● Some NICs have VLAN acceleration enabled by default 
○ mlx5 and i40e 
○ sfc may - mixed results 

● VLAN header stripped in hardware 
○ VLAN tag accessed via descriptor, set in skb 

● Does not work with XDP 
○ Buffer accessible via XDP context does not have vlan hdr 
○ BPF program expecting VLAN based decision will fail

ethernet hdr IP/IPv6 hdr payload vlan_TCI
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XDP and VLANs

● Disable VLAN acceleration 
○ ethtool -k <DEV> rxvlan off 

● XDP program needs to strip VLAN header

ethernet hdr vlan hdr IP/IPv6 hdr payload

ethernet hdr IP/IPv6 hdr payload



ACL at VM Ingress
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Host ACL for Packets to VM

● Host side, VM-specific "ingress" 
ACL 
○ Looks up VM data in VM info 

map 
○ VM specific ACL map 

● "Tx" path for the tap device 
○ No "Tx" XDP option 

● BPF program attached to 
DEVMAP entry
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BPF program on DEVMAP Entries

● v5.8 allows programs to be attached to DEVMAP entries 

● Program is run on XDP_REDIRECT 

● Context has both Rx device and Tx (redirect) device 

● net device delete removes map entry and any program
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VM Ingress ACL Example

● https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_tx.c 

● https://github.com/dsahern/bpf-progs/blob/master/ksrc/
acl_vm_common.h 

● https://github.com/dsahern/bpf-progs/blob/master/ksrc/flow.h

https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_tx.c
https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_common.h
https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_common.h
https://github.com/dsahern/bpf-progs/blob/master/ksrc/flow.h
https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_tx.c
https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_common.h
https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_common.h
https://github.com/dsahern/bpf-progs/blob/master/ksrc/flow.h


VM Egress Traffic
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Handling Traffic from VM

● Packets *from* VM 
○ Rx for tap device 

● Program attached to tap device 
○ Validate packet (e.g., source 

mac, network address) 
○ Egress ACL for VM 

● Redirects packet to host device 
○ Could redirect to another VM 

if allowed 
● BUM traffic takes the bridge path 
● Program and map cleaned up 

when tap device is deleted
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Redirecting VM Egress Traffic

● Egress through bond 
○ Need to specify bond port in redirect 
○ Which leg of bond to use?  
○ Bond policy: active/backup, L3+L4 hashing? 

● BPF helper? 
○ it's complicated 

● One option is to put that knowledge in the ebpf program and maps 
○ active leg of bond or computing hash and picking leg 
○ https://github.com/dsahern/bpf-progs/blob/master/ksrc/

xdp_vmegress.c#L43

https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c#L43
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c#L43
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c#L43
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c#L43
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Redirecting VM Egress Traffic

● Egress through bond 

● VLAN tag 
○ No VLAN acceleration for XDP_REDIRECT and Tx 
○ XDP program on tap device needs to insert VLAN header
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Redirecting VM Egress Traffic

● Egress through bond 

● VLAN tag 

● Tx offloads in guest 
○ Host is the "hardware" + "network" to the guest 
○ Do not work with XDP - no hardware offload support 
○ libvirt config: 

<driver name='vhost'> 
    <host tso4='off' tso6='off' ecn='off' ufo='off' csum='off'/> 
</driver>
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Redirecting VM Egress Traffic

● Egress through bond 
● VLAN tag 
● Tx Checksum offload in guest 
● Number of Rx/Tx queues needs to be equal to the number of CPUs 

○ ethtool -L eth0  combined $(nproc) 
○ ethtool -L eth1  combined $(nproc) 
○ Does not work for large systems - more cpus than queues! 

■ Can tell you from experience, it is baffling to debug: some packets 
work fine and others are dropped when vhost thread migrates to cpu 
that does not have a queue 

■ Affine vhost threads to CPUs with associated queues 
● /proc/interrupts
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VM Egress Example

● https://github.com/dsahern/bpf-progs/blob/master/ksrc/
xdp_vmegress.c

https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c


Demo Time
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Demo

● https://github.com/dsahern/bpf-progs/blob/master/scripts/l2fwd-
demo.sh

https://github.com/dsahern/bpf-progs/blob/master/scripts/l2fwd-demo.sh
https://github.com/dsahern/bpf-progs/blob/master/scripts/l2fwd-demo.sh
https://github.com/dsahern/bpf-progs/blob/master/scripts/l2fwd-demo.sh
https://github.com/dsahern/bpf-progs/blob/master/scripts/l2fwd-demo.sh


Using XDP in VMs
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XDP in VMs

● Two common problems for KVM with virtio_net 
○ Machine type 
○ vhost threads and queue requirements
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XDP in VMs: Machine type

● This error: 
$ bpftool net attach xdp id 14 dev eth0 
Kernel error message: virtio_net: XDP expects header/data in single 
page, any_header_sg required 

● Machine type is too old (e.g., pc-i440fx-1.5) 

● Qemu needs to use a modern machine (e.g., pc-i440fx-4.1) 
○ <type arch='x86_64' machine='pc-i440fx-4.1'>hvm</type>
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XDP in VMs: NIC queues

● This error: 
$ bpftool net attach xdp id 13 dev eth0 
Kernel error message: virtio_net: Too few free TX rings available 

● Number of queues on the tap device needs to be 2 * Nvcpu 
○ e.g., 16 vcpu VM needs 32 queues 

<model type='virtio'/> 
<driver name='vhost' queues='32'/> 

● Applies to every tap device an xdp program is to be allowed
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XDP in VMs: H/W offloads

● Adding XDP program to VM netdevice disables Tx checksum and TSO 
on tap device in host 
○ significant hit on guest Rx performance 

● Impacts the ability to do performance measurements with an XDP 
program attached 
○ e.g., pps to a VM



Final Comments
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Motivation: XDP-vs-OVS Performance Comparison
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Bypassing full stack means ...

● Loss of S/W RPS, RFS and ARFS 
○ Relying on RSS in H/W to distribute packets across queues and 

cpus 

● Bridge learning (if relevant) 

● No hardware timestamps 
○ e.g., PTP timestamping of packets in H/W




