
digitalocean.com

XDP and the Cloud

digitalocean.com

Scope of Tutorial

● Hypervisor networking
○ Move packets from network to

VM and VM to network as fast
as possible

● XDP for moving packets
○ co-exists with full stack
○ gotchas

● What is needed to use XDP in VMs

eth0

eth0

tap

host

bond0

VM VM VM

br0 host stack

eth0 eth0

tap tap

eth1

digitalocean.com

Packet Processing with XDP

● Bypasses skb allocations and host networking stack (e.g., bridge)

● Can have a similar XDP program on the tap device to redirect to the
egress NIC

● HOW the redirect decision is made is up to the ebpf program
○ L2 / FDB lookup - tap into bridge fdb (need bpf helper)
○ L3 / FIB lookup - existing fib_lookup helper
○ Map with static <dmac,vlan> to next device mapping

■ This tutorial focuses on this option

● Per-packet and per-VM decision

● XDP programs can also do packet validations (VMs are untrusted), ACLs
and crude bandwidth limiting

digitalocean.com

Host Setup

● v5.8 kernel, Ubuntu 18.04 OS

● Mellanox ConnectX-4 Lx NIC (25G) using mlx5 driver
● Typical host networking configuration

○ NIC ports into 802.3ad (LACP) bond
○ L3+L4 hash for Tx
○ OVS bridge

● VM can be on one or more networks
○ e.g., Public, private
○ VLANs for network separation - invisible to the VM

● VM networking is tap + vhost

digitalocean.com

VM Networking

● Directions for tap device:
○ Tx = Packets to the VM
○ Rx = Packets from the

VM

● XDP on tap device means
processing packets egressing
a VM

ethN

tap

TX RX

Host Ingress Traffic

digitalocean.com

Layer 2 Forwarding in XDP

● Layer 2 forwarding program on
ingress NICs

● Very simple virtual switch
○ Pulls vlan, dest mac from

ethernet header
○ Looks up next device for

packet
● FDB map

○ key: <vlan, dest mac>
○ value: device index

● Ports map

eth0

eth0 eth1

tap

host

eth0

tap

eth0

tap

bond0

VM VM VM

fdb

ebpfebpf

ports br0 host stack

digitalocean.com

Layer 2 Forwarding in XDP

● Basic Premise:
○ Known traffic takes the fast

path (XDP)
○ BUM traffic uses full stack

● "Known traffic" defined as entry
exists in FDB map

● Goal is for 90+% of traffic to take
the fast path

eth0

eth0 eth1

tap

host

eth0

tap

eth0

tap

bond0

VM VM VM

fdb

ebpfebpf

ports br0 host stack

digitalocean.com

FDB as a Hash Map

● Hash Map (BPF_MAP_TYPE_HASH)

● MAC addresses are relative to a VLAN
○ Key: <vlan, mac>
○ Value: index

● Userspace updates FDB map as VMs start and stop
○ e.g., hypervisor agent or control script

digitalocean.com

Device Map - BPF_MAP_TYPE_DEVMAP

● XDP_REDIRECT requires next device for packet
○ Best performance requires use of bpf_redirect_map()

● DEVMAP is a pointer to netdevices

● Simplest design is for DEVMAP index == netdevice index
○ FDB lookup returns device index

● Map sizes declared up front - at load time
○ tap device index can grow over time

● Better approach is for FDB lookup to return index into DEVMAP
○ Needs coordination between maps

fdb
map

dev
map

<vlan,mac> map index device

digitalocean.com

Device Map - BPF_MAP_TYPE_DEVMAP_HASH

● New in v5.4

● Avoids the need to manage mappings between fdb and dev maps
○ Map index can be device index regardless of device index value

and size of map

fdb
map

dev
map

device index device<vlan,mac>

digitalocean.com

Redirect with Kernel v5.6

● v5.6 performance of bpf_redirect is on par with map variant
○ No need for port map - or coordination between maps
○ FDB lookup can return tap device index
○ Loss of direct error reporting

digitalocean.com

Layer 2 Forwarding in XDP

● https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_l2fwd.c

● Very simple virtual switch like processing

https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_l2fwd.c
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_l2fwd.c

digitalocean.com

XDP and VLANs

● Some NICs have VLAN acceleration enabled by default
○ mlx5 and i40e
○ sfc may - mixed results

● VLAN header stripped in hardware
○ VLAN tag accessed via descriptor, set in skb

● Does not work with XDP
○ Buffer accessible via XDP context does not have vlan hdr
○ BPF program expecting VLAN based decision will fail

ethernet hdr IP/IPv6 hdr payload vlan_TCI

digitalocean.com

XDP and VLANs

● Disable VLAN acceleration
○ ethtool -k <DEV> rxvlan off

● XDP program needs to strip VLAN header

ethernet hdr vlan hdr IP/IPv6 hdr payload

ethernet hdr IP/IPv6 hdr payload

ACL at VM Ingress

digitalocean.com

Host ACL for Packets to VM

● Host side, VM-specific "ingress"
ACL
○ Looks up VM data in VM info

map
○ VM specific ACL map

● "Tx" path for the tap device
○ No "Tx" XDP option

● BPF program attached to
DEVMAP entry

eth0

eth0 eth1

tap

host

eth0

tap

eth0

tap

bond0

VM VM VM

ebpf

ACL br0

digitalocean.com

BPF program on DEVMAP Entries

● v5.8 allows programs to be attached to DEVMAP entries

● Program is run on XDP_REDIRECT

● Context has both Rx device and Tx (redirect) device

● net device delete removes map entry and any program

digitalocean.com

VM Ingress ACL Example

● https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_tx.c

● https://github.com/dsahern/bpf-progs/blob/master/ksrc/
acl_vm_common.h

● https://github.com/dsahern/bpf-progs/blob/master/ksrc/flow.h

https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_tx.c
https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_common.h
https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_common.h
https://github.com/dsahern/bpf-progs/blob/master/ksrc/flow.h
https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_tx.c
https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_common.h
https://github.com/dsahern/bpf-progs/blob/master/ksrc/acl_vm_common.h
https://github.com/dsahern/bpf-progs/blob/master/ksrc/flow.h

VM Egress Traffic

digitalocean.com

Handling Traffic from VM

● Packets *from* VM
○ Rx for tap device

● Program attached to tap device
○ Validate packet (e.g., source

mac, network address)
○ Egress ACL for VM

● Redirects packet to host device
○ Could redirect to another VM

if allowed
● BUM traffic takes the bridge path
● Program and map cleaned up

when tap device is deleted

eth0

eth0 eth1

tap

host

eth0

tap

eth0

tap

bond0

VM VM VM

ebpf

ACL
br0

digitalocean.com

Redirecting VM Egress Traffic

● Egress through bond
○ Need to specify bond port in redirect
○ Which leg of bond to use?
○ Bond policy: active/backup, L3+L4 hashing?

● BPF helper?
○ it's complicated

● One option is to put that knowledge in the ebpf program and maps
○ active leg of bond or computing hash and picking leg
○ https://github.com/dsahern/bpf-progs/blob/master/ksrc/

xdp_vmegress.c#L43

https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c#L43
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c#L43
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c#L43
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c#L43

digitalocean.com

Redirecting VM Egress Traffic

● Egress through bond

● VLAN tag
○ No VLAN acceleration for XDP_REDIRECT and Tx
○ XDP program on tap device needs to insert VLAN header

digitalocean.com

Redirecting VM Egress Traffic

● Egress through bond

● VLAN tag

● Tx offloads in guest
○ Host is the "hardware" + "network" to the guest
○ Do not work with XDP - no hardware offload support
○ libvirt config:

<driver name='vhost'>
 <host tso4='off' tso6='off' ecn='off' ufo='off' csum='off'/>
</driver>

digitalocean.com

Redirecting VM Egress Traffic

● Egress through bond
● VLAN tag
● Tx Checksum offload in guest
● Number of Rx/Tx queues needs to be equal to the number of CPUs

○ ethtool -L eth0 combined $(nproc)
○ ethtool -L eth1 combined $(nproc)
○ Does not work for large systems - more cpus than queues!

■ Can tell you from experience, it is baffling to debug: some packets
work fine and others are dropped when vhost thread migrates to cpu
that does not have a queue

■ Affine vhost threads to CPUs with associated queues
● /proc/interrupts

digitalocean.com

VM Egress Example

● https://github.com/dsahern/bpf-progs/blob/master/ksrc/
xdp_vmegress.c

https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c
https://github.com/dsahern/bpf-progs/blob/master/ksrc/xdp_vmegress.c

Demo Time

digitalocean.com

Demo

● https://github.com/dsahern/bpf-progs/blob/master/scripts/l2fwd-
demo.sh

https://github.com/dsahern/bpf-progs/blob/master/scripts/l2fwd-demo.sh
https://github.com/dsahern/bpf-progs/blob/master/scripts/l2fwd-demo.sh
https://github.com/dsahern/bpf-progs/blob/master/scripts/l2fwd-demo.sh
https://github.com/dsahern/bpf-progs/blob/master/scripts/l2fwd-demo.sh

Using XDP in VMs

digitalocean.com

XDP in VMs

● Two common problems for KVM with virtio_net
○ Machine type
○ vhost threads and queue requirements

digitalocean.com

XDP in VMs: Machine type

● This error:
$ bpftool net attach xdp id 14 dev eth0
Kernel error message: virtio_net: XDP expects header/data in single
page, any_header_sg required

● Machine type is too old (e.g., pc-i440fx-1.5)

● Qemu needs to use a modern machine (e.g., pc-i440fx-4.1)
○ <type arch='x86_64' machine='pc-i440fx-4.1'>hvm</type>

digitalocean.com

XDP in VMs: NIC queues

● This error:
$ bpftool net attach xdp id 13 dev eth0
Kernel error message: virtio_net: Too few free TX rings available

● Number of queues on the tap device needs to be 2 * Nvcpu
○ e.g., 16 vcpu VM needs 32 queues

<model type='virtio'/>
<driver name='vhost' queues='32'/>

● Applies to every tap device an xdp program is to be allowed

digitalocean.com

XDP in VMs: H/W offloads

● Adding XDP program to VM netdevice disables Tx checksum and TSO
on tap device in host
○ significant hit on guest Rx performance

● Impacts the ability to do performance measurements with an XDP
program attached
○ e.g., pps to a VM

Final Comments

digitalocean.com

Motivation: XDP-vs-OVS Performance Comparison

digitalocean.com

Bypassing full stack means ...

● Loss of S/W RPS, RFS and ARFS
○ Relying on RSS in H/W to distribute packets across queues and

cpus

● Bridge learning (if relevant)

● No hardware timestamps
○ e.g., PTP timestamping of packets in H/W

