-8
-
»
-
-
»
-
-
< ;
T,) =a . E , — R . ,. |
- ‘ o Y o R
l\t:\) - | . <t 3 .| \\"l ':V.'::‘V
NVIDIA. BN W e e —
. ¢ 52 ' - . . } Y
-

ADDING AF_XDP ZERO-
COPY SUPPORT TO DRIVERS \

Maxim Mikityanskiy, 2020

AGENDA

Basics that you need to know before implementing AF_XDP
support in the driver

All required details to add AF_XDP zero-copy support to the
driver

More advanced features: unaligned chunks, need_wakeup
AF_XDP-related challenges

PREREQUISITES

XDP support in the driver
Basic knowledge about AF_XDP

AF_XDP 101

AF_XDP 101 - UMEM

Allocated by the application using mmap ()
Shared between the application, driver and hardware

Bidirectional DMA mapping

Fmng.!g!:i-———::;:!!.RXng

AN

UMEM

Completion Ring

AF_XDP 101

Driver support is needed for zero-copy
AF_XDP has (slow) fallbacks when zero-copy or XDP are not supported
Most of the internals are encapsulated in AF_XDP core

Minimal interface is exposed to the driver

DRIVER IMPLEMENTATION

WHAT YOU’RE GOING TO DO IN THE DRIVER

Support XDP

Implement NDOs (setup, wakeup)

When XSK is enabled, create XSK RX queue and TX queue
For XSK RX queue, allocate buffers from UMEM

Handle XSK TX in NAPI

WHY WE NEED SEPARATE QUEUES FOR X5K

XSK RX: allocation of buffers happens from the UMEM
XSK TX: simplify teardown

//

Setup

.ndo_bpf
xdp _rxqg _info reg mem model
xdp get umem from qgid

XS
XS
XS
XS
XS

//

XS
XS
XS
XS
XS

K_umem_get headroom
<_umem_get chunk size
ouff set rxqg info
ouff dma_map

buff dma _unmap

need wakeup
K_umem _uses need wakeup
K _set rx need wakeup

K _clear rx need wakeup
K _set tx need wakeup

K _clear tx need wakeup

KERNEL
//

API

TX/RX

.ndo_xsk wakeup

//

XS
XS
XS
XS
XS

//

XS
XS
XS
XS
XS
XS

29,4

puff can_alloc

buff _alloc

outt xdp get frame_ dma
ouff _dma_sync_for_ cpu

ouff free

X

K_umem_consume_tx

ouft _raw get dma
ouft_raw get data

ouft _raw _dma _sync_ for device
K_umem_consume_tx done

K_umem complete tx

NDO STUBS

// .ndo _bpf:
switch (xdp->command) {
case XDP_SETUP XSK UMEM:

return vnd xsk setup umem(dev, xdp->xsk.umem, xdp->xsk.queue id);

}

// .ndo_xsk wakeup:
int vnd xsk wakeup(struct net device *dev, u32 gid, u32 flags)

1
// Check that XDP program is set, and XSK is enabled on queue gid.

// Return an error otherwise.

if (!napi_if scheduled_mark_missed(napi))
// Trigger an IRQ using hardware mechanisms.

return 9;

SETUP STAGE

int vnd xsk setup umem(struct net device *dev, struct xdp umem *umem, ul6 qgid)

{

return umem ? vnd xsk enable umem(dev, umem, qgid) :
vhd xsk disable umem(dev, qid);

The kernel makes sure no UMEM is attached to this queue when it enables XSK.
You’ll need to keep track which queues have a UMEM attached:
Store UMEM pointers yourself.
Store a flag and acquire the UMEM pointer by xdp get umem from gid.
You need this flag to distinguish from non-zero-copy AF_XDP.

You need to store it where it survives reset of queues. When the netdev is
brought up, it will be possible to determine if a queue is XSK-enabled.

SETUP STAGE
int vnd xsk enable umem(struct net device *dev, struct xdp umem *umem, ulé6
qid)
!

// Validate driver-specific limitations.

xsk_buff dma _map(umem, dev, ©); // Check the return code!

// Set the flag that queue gid 1s XSK-enabled.

// If netdev 1is up, create XSK RX and TX queues.
// Otherwise, validate the UMEM parameters, i.e. chunk size vs MTU -
// this is the last chance to return -EINVAL.

SETUP STAGE

int vnd xsk disable umem(struct net device *dev, ul6 gid)

{

struct xdp_umem *umem = xdp get umem from qgid(dev, qgid);

// If netdev 1is up, destroy XSK RX and TX queues.
// Clear the flag that queue gid is XSK-enabled.

xsk_buff _dma unmap(umem, 0);

return 0; // Shouldn’t fail.

SETUP STAGE

int vnd open channel(...)

1
// If an XDP program is set...

// If this channel is flagged as XSK-enabled...

struct xdp_umem *umem = xdp_get umem from gid(dev, qid);
// Bring up XSK queues.

// Otherwise, configure as usual.

XSK RX QUEUE SETUP

// Where you call xdp rxg_info_reg mem model, for XSK RX queue do instead:
err = Xxdp_rxq_info reg(&rqg->xdp _rxqg, netdev, qgid);
err = xdp_rxg_info reg mem _model(&rqg->xdp _rxqg, MEM TYPE XSK BUFF_POOL, NULL);

xsk_buff set rxg info(umem, &rg->xdp rxq);
// Note: don’t forget to actually handle errors.

MEM_TYPE XSK BUFF_POOL must be used with XSK RX queues.

Buffer allocation will happen from the UMEM, as shown in the next slide.

XSK RX QUEUE DATA PATH

Allocate buffers with xsk buff alloc - returns a pre-filled xdp buff.
Use xsk buff xdp get frame dma and post a hardware descriptor.
On RX (in NAPI), use xsk buff dma sync for cpu to sync DMA.

Run your XDP handling function.

Don’t unmap XSK frames.

RX XDP RESULT CODES

XDP REDIRECT to XSKMAP: xsk buff free is not needed.

XDP_REDIRECT (other): xdp convert buff to frame does xsk buff free.
XDP_REDIRECT (errors): call xsk_buff free.

XDP DROP, XDP ABORTED: call xsk buff free.

XDP TX (including errors): no xsk buff free, it’s done by
xdp_ convert buff to frame (however, if it fails, do xsk_buff free).

XDP_PASS (including errors): allocate an SKB, copy data and call
xsk _buff free.

XDP_PASS EXAMPLE

struct sk buff *vnd xsk construct skb(struct napi struct *napi, void *data,
u32 len)

!
struct sk buff *skb;

skb = napi_alloc skb(napi, len);

if (unlikely(!skb)) {
// Increase error counters.
return NULL;

}

skb_put_data(skb, data, 1len);

return skb;

XSK TX QUEUE DATA PATH

XSK TX queue is similar to the XDP TX queue

The application kicks TX by issuing a syscall

.ndo xsk wakeup is called to trigger an IRQ and get into NAPI poll
TX happens from NAPI poll, along with handling completions

XSK TX QUEUE DATA PATH

// Do TX from NAPI poll.

for (; budget; budget--) {
struct xdp desc desc;
dma_addr_t dma;

if (!xsk _umem consume_ tx(umem, &desc))
break;

dma = xsk_buff raw_get dma(umem, desc.addr);

xsk_buff _raw _dma_sync for device(umem, dma, desc.len);
// Transmit the packet (dma, desc.len).

flush = true;

}

if (flush) {
// Ring the doorbell.
Xsk_umem_consume_tx _done(umem);

XSK TX QUEUE DATA PATH

// Poll completions from hardware as usual.

// Count them:
xsk frames++;

// Call this in the end:
if (xsk_frames)
xsk_umem_complete tx(umem, xsk frames);

EXTRA STUFF

UNALIGNED CHUNKS

Extension of AF_XDP to support frames that start at unaligned addresses
Transparent to the compatible drivers

The driver can check the unaligned field of struct xsk buff pool or the
XDP UMEM_UNALIGNED CHUNK_ FLAG flag of struct xdp umem

NEED_WAKEUP

A performance feature to avoid unnecessary busy polling
On RX: avoid in-driver polling when the fill ring is empty

On TX: avoid syscall flood when the driver is going to wake up anyway

NEED_WAKEUP ON RX

// Call this function after posting hardware descriptors
// alloc err 1s true 1f xsk buff alloc returned NULL
bool vnd xsk update rx wakeup(struct xsk buff pool *pool, bool alloc err)

{

if (!xsk uses need wakeup(pool))
return alloc err; // return true means reschedule NAPI

if (alloc_err)
xsk_set rx_need wakeup(pool);

else
xsk _clear_rx_need wakeup(pool);

return false;

NEED_WAKEUP ON TX

void vnd xsk update tx wakeup(struct xsk buff pool *pool)
{

if (!'xsk uses need wakeup(pool))
return;

if (/* XSK TX queue is empty */)
xsk_set tx need wakeup(pool);
else

xsk clear_tx _need wakeup(pool);

}

// Call it from NAPI twice to avoid a race condition:
vnd _poll xsk completions(queue);

vnd_xsk update tx wakeup(pool);
vnd xsk_tx(pool, VND TX XSK POLL_ BUDGET);

vnd xsk update tx wakeup(pool);

NEED_WAKEUP RACE CONDITION FIX FOR TX

Race condition

Driver __________________________Application

Transmit packets
Put new packets to transmit

Query need_wakeup - it’s false

Hardware queue is empty, set need_wakeup
Waits for the wakeup syscall Doesn’t call the wakeup syscall

Fix
vnd _poll xsk completions(queue);
vnd xsk update_tx wakeup(pool); // Can become true

vnd_xsk _tx(pool, VND TX XSK POLL BUDGET);
vnd_xsk update_tx wakeup(pool); // Can become false

QUEUE ALLOCATION SCHEME

i40e way mix5 way
XSK on channel X replaces normal Channels 0..N-1 are for normal traffic
queues

Queue IDs N..2*N-1 are for XSK

RSS is broken by default .
Fallback to copy mode is broken

NVIDIA.

