
Linux “Time Travel” mode
and network simulation

Johannes Berg
johannes.berg@intel.com

johannes@sipsolutions.net
netdev 0x14

mailto:johannes.berg@intel.com
mailto:johannes@sipsolutions.net

Introduction
● “Time Travel”

○ Term coined in mailing list discussions
○ Skip time forward when system is idle
○ Cannot go backwards!

● User Mode Linux (UML)
○ A kind of virtual machine
○ Port of the Linux kernel to its own userspace
○ Userspace inside running as ptrace’d processes

Motivation
Testing!

● Speed
○ Delays/timeouts collapse due to time forwarding

● Ability
○ E.g. when physical device doesn’t exist yet
○ Device simulation might be slower than real time
○ Network topologies, …

● Debug checks
○ Without affecting timing
○ E.g. kernel debug options (slub debugging, object debugging, …)

● Manual debugging
○ Time stops when in gdb

Implementation

“Time Travel” modes
● time-travel

skip time forward if possible, but never slower than real time
(will not cover the details here)

● time-travel=inf-cpu
Skip time forward, and simulate infinite CPU speed, i.e. time doesn’t move
until the system is idle or in a delay. Note that there’s no preemption in any
way here and even user space infinite loops will hang the system/simulation.

● time-travel=ext:/path/to/controller-socket
Like =inf-cpu but integrate with multiple UML instances

Implementation - underlying mechanisms
Four central points (that we need to modify), everything else (timing related)
derives from this:

● “What time is it?”
Clock source (struct clocksource)

● “Please wake me in …”
Clock event source (struct clock_event_device)

● “Wait just a little without scheduling.”
Delays (ndelay, mdelay, cpu_relax)

● “There’s nothing to do.”
Idle loop (arch_cpu_idle)

“What time is it?”
● In UML, normally just asks the host OS using

clock_gettime(CLOCK_MONOTONIC, …)

● In time-travel mode, just read internal “current time” (time_travel_time)

● Caveat: sometimes user space has loops so make this cost a little bit of time
(otherwise get infinite timeout loops e.g. in python socket servers)

“Please wake me in …”
● In UML, normally just arm a host OS timer with timer_settime(...)

● In time-travel mode, just remember when the next wakeup should happen.

“Wait just a little without scheduling.”
● In UML, there’s normally no special implementation. Just delay per the normal

loops per jiffy, or do a “nop” for cpu_relax().

● In time-travel mode this must “take time”, so move time forward by an
appropriate number of nanoseconds.

“There’s nothing to do.”
● In UML, normally just sleep for a second - will be interrupted by timer

● In time-travel mode, “sleep” for up to a second, i.e. move clock forward to the
next wakeup time and trigger the timer interrupt

Implementation - so far
● Can speed up delays in tests in a single virtual machine now

● Already useful: e.g. wpa_supplicant tests (this is upstream)
○ >6x speedup

(for example, DFS channel tests that require 120s CAC no longer take nearly that long)
○ Kernel debug options used to be problematic, causing due to userspace timeouts, not now
○ Disconnected from real time, so can oversubscribe CPUs without simulation noticing in form of

timeouts

But we always want more!

Multiple Machines

Multiple Machines - Modifications
● Cooperative scheduling between the different instances
● Simple protocol (include/uapi/linux/um_timetravel.h)

○ REQUEST runtime
○ WAIT for my turn
○ GET current time
○ UPDATE current time
○ RUN now
○ FREE_UNTIL (for optimisation)

● Delay/Idle changes to not just move time/skip to the next event, but
○ REQUEST from controller
○ WAIT until it’s my turn
○ RUN when told
○ repeat

Multiple Machines - Controller application
● Contains the overall “calendar” that keeps track of each participant’s next

event
● Notifies which one is allowed to run
● Distributes time updates

Working to release this as open source, including a framework for device
simulation.

Devices

Devices
Conceptually simple? Need to communicate with

● the time controller (just like a virtual machine), and
● the device driver.

Devices - virtio/vhost-user
We already have:

● VirtIO
○ Standard model
○ Existing infrastructure and drivers

● vhost-user
○ pulls device implementation out of the hypervisor

Implemented vhost-user support in UML. Done?

Let’s transmit a network frame:

All handled by arch/um/drivers/virtio_uml.c and device-side vhost-user library code.

**: this may cause more messages, including communication with the Host and Device

Devices - virtio/vhost-user

Normal vhost-user model

● Host puts frame on the virtqueue
● Host notifies device using eventfd

● Device handles frame

Simulation model

● Host puts frame on the virtqueue
● Host notifies device using in-band signal
● Device asks Controller for time to run**
● Device sends ACK back to host
● Host continues running until idle/delay
● Host returns to Controller
● Controller tells device to run
● Device handles frame

Devices - Wireless
Within a single machine, mac80211_hwsim and wmediumd can simulate
wireless networks. Extend:

● Transport netlink protocol over virtio
● Teach wmediumd to be a vhost-user device implementation that has a device

for every socket connection

https://github.com/bcopeland/wmediumd

Demo

Summary

Summary
● Time-travel mode can disconnect simulated time from real time

○ CPU bound - faster or slower than real time depending on simulation complexity

● Already used for testing in hostapd/wpa_supplicant
● Multiple machines & devices can be in a common simulation using the

um_timetravel.h protocol and the controller application
● VirtIO devices are supported with vhost-user, using the “in-band signalling”

and “reply-ack” protocol extensions
● Already used for testing wireless with real firmware & driver at Intel

