
Challenges in Testing:
How OpenSourceRouting tests Quagga

Martin Winter
Network Device Education Foundation (NetDEF) / OpenSourceRouting

www.netdef.org / www.opensourcerouting.org
San Jose, CA, USA
mwinter@netdef.org

Abstract

This paper discusses the details how OpenSourceRouting tests
Quagga and the challenges on testing a multi-platform applica-
tion, supporting many different OS variations, CPU architec-
tures and a community of various volunteers and commercial
users. The goal of the talk is to give some inspiration to other
projects on how to approach this and start a discussion.

Keywords
Testing, Routing Protocols, BGP, OSPF, ISIS, Quagga, Con-
tinuous Integration (CI), Open Source, Multi-Platform testing

Introduction
OpenSourceRouting is a project run by NetDEF (Network
Device Education Foundation), a US based, non-profit 501c3
corporation. Our main activity under OpenSourceRouting is
our work supporting Quagga. When we started this work, we
realized that one of the missing tasks in the Quagga Commu-
nity was thorough testing and decided to make this one of our
key area in Quagga. It soon became clear, that there weren’t
good examples to copy from other communities - we had to
mostly build from scratch based on our knowhow testing at
router vendors and adapt to the Open Source world. Key fo-
cus was to be more open, simpler to understand and much
more automated as we can’t afford the headcount of a large
router vendor.

In this paper, we would like to explain how OpenSourceR-
outing tests the Quagga project and discuss some of the chal-
lenges.

This should be mainly seen as inspiration for other projects
and as a basis for discussion. While the paper talks about test-
ing Quagga, the concepts, ideas and challenges are probably
similar for many other projects.

The main challenges/requirements for testing Quagga are:

• Community driven project. There is no single authority to
make decisions and there is no mandatory training for com-
munity members. The process and particularly the results
need to be easy to understand.

• Commercial tools for testing (mixed with Open Source).
Dedicated testing hardware can’t be moved to the cloud
and some commercial software may not allow it in its li-
cense.

• Application which requires network topology for testing.
Many tests require multiple systems to be connected to-
gether to run the tests

• Multi-OS / Multi-Platform Application. The Application
is designed to run on various Operating Systems and CPU
architectures

The goal of this paper is to give some inspiration to other
projects on how to approach this this complexity.

What is ”Quagga”
The focus on this paper is not on Quagga, but rather on the
testing. However, it helps to have a basic background on
Quagga to understand the challenges and choices highlighted.

Quagga[7] is an Open Source (GPLv2 or later) implemen-
tation of a routing stack. It currently implements RIP, RIPng,
OSPFv2, OSPFv3, ISIS and BGP routing protocols. It is not a
fully functional router as it only handles the routes and not the
forwarding. It is usually combined with a forwarding plane
such as a Linux to make it into a simple router or it can be
connected to external hardware to build a distributed router
(i.e. a SDN deployment).

Quagga was originally forked from Zebra. It is a commu-
nity project as there is no single company behind it. It is run
and maintained by its community.

Current state of the Quagga community
The process is adapted to the way the Quagga Community
currently works. Here is quick summary of the key elements.
This isn’t meant as critique of Quagga or as suggestion for
any other project. It mainly states the facts and challenges.
We didn’t want to force the community to change the work-
flow - at least not at the beginning until we could show the
value to the community. Similar limitations or choices might
be found on many other (mostly long running) open source
projects.

No Owner
There is no single owner or major sponsoring (and control-
ling) corporation behind Quagga. Decisions are either made
by conscious on a mailing list or are frequently deferred un-
til a conscious decision can be made later. There is a small
group of maintainers, but beside the agreement that their job

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

is to push commits into the git (They are the ones with write
access), their exact role is fluid.

Simple Git Model
Quagga is contained in a public git on Savannah[2], a smaller
public Git hosting. The git model is mostly a ”Centralized
Workflow”. There is a master branch and a frequent ”pro-
posed” testing branch of commits before they fold into mas-
ter every few months. The master branch is expected to be
stable and working code. Releases are set as tags directly
on the master branch and not on release branches off master.
Write access to any branches is limited to the same group of
maintainers.

Email based patch submissions
Bug fixes and submissions of new code is done mainly by
emailing the code to the Quagga-Dev1 mailing list. Code
review and discussion is done in simple email threads on
the mailing list. Patches mailed to the list are automatically
picked up by the patchwork tool [5] and published in the
Quagga Patchwork Database 2.

Choosing a CI System
Continuous Integration (CI) is currently a hot topic and many
choices exist. Some of the more popular ones are Jenkins[9],
Travis CI[10] and Atlassian Bamboo[1]. Some CI Systems
are hosted in the cloud only, some others allow running it on
your own host. Another key difference is the supported Oper-
ating Systems and integration into other tools (ie Git host for
triggering runs, publishing results, bug database connection
etc) and supported languages.

It might be news to developers of CI systems, but the world
had not (yet) evolved just to Linux with all applications writ-
ten in Java and executed as web applications.

OpenSourceRouting decided on Atlassian Bamboo. It is
less feature rich than some of the other CI systems, but it
worked flawless and reliable in our evaluation and in produc-
tion so far.

CI for projects not (just) using Linux
Most CI systems are designed for Linux and require some
Java agent to be installed to function. Unfortunately, this
makes it difficult to test against other systems, such as
NetBSD which may not have any of the supported Java ver-
sions available (or where some functions are not implemented
in Java). For our building stage with the required supported
operating systems, we could not find a single CI system with a
Java client which worked on all of them. Main issues were the
older distributions which we support and the various *BSD
based ones. In our system, we decided to natively build the
code on the various supported Operating systems and specific
distributions. This includes older distributions like CentOS 6
or FreeBSD 8. Some of our commercial testers are based on
even older CentOS 5. None of the tested CI systems had Java

1https://lists.quagga.net/mailman/listinfo/quagga-dev
2Quagga Patchwork DB: http://patchwork.quagga.net/

agents which were supported or would reliable work on these
older systems.

At the end, we decided to skip the Java agent for the multi-
platform parts of our test and use a local Java agent on the CI
system itself which then executed and controlled the target
platforms with simple shell commands across SSH as shown
in Figure 1

Figure 1: Using 2-stage Agent with execution using shell
commands across SSH instead of local Java Agent

Hosted vs Local
Fully hosted would be impossible for us as we need to have
at least some agents executed on dedicated network testing
hardware. At the same time, most free online CI systems limit
the number of parallel runs, the number of parallel agents
(sub-tasks of the same test run) or number of executions per
day. Our tests take a long time to run and we depend on a
large number of parallel execution nodes. For this reason, we
ended up using a CI on our own server hardware.

Other considerations
Stability ruled out Jenkins in our tests. While each bug got
promptly fixed in the next version, at the same time new bugs
(blockers for our application) got introduced as well. After a
few months, we were forced to give up, as this made it too
time-intensive for us to use.

Licensing cost was not an issue on any of the evaluated
systems (at least not the self-hosted ones) as they were all
free in general or free for Open Source projects.

Overview of a Quagga CI Run
Figure 2 shows an overview of the CI system. The major chal-
lenge is the time and the number of parallel execution nodes
required for the various stages. We try to run everything in
virtual machines as this allows a much higher scale.

As seen in Figure 2, a full run of the implemented CI sys-
tem takes over 2 days and nearly 50 virtual machines running
in Parallel. Even considering that many of these tests are only
really executed on Ubuntu with Intel architecture, this makes
it impossible to run on every commit. We are currently work-
ing on adding FreeBSD to the full protocol tests as well, but
this will already push us towards 100 VMs in parallel to exe-
cute a single pass.

The main goal is to reduce the time to provide a limited
”pass” reply within a reasonable time for the contributors.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

Figure 2: Overview of the automated CI Run

Our guess is that feedback should be less than 2 hrs after sub-
mission. Based on this, we run the fully automated pass only
until the ”Limited tested” status. The full RFC compliance
check is only manually triggered on specific releases at this
time to keep the test system load acceptable.

At the end of the ”Limited Tested (or at any earlier stage
when the tests are aborted based on a failure), the CI system
will collect the details and send a simple email back to the
submitter and the list as a response to the patch. We don’t
expect submitters to know or monitor the CI system, so an
easy to understand email back is usually the best choice. In
case of failing notification from the CI, the contributor would
then send in a new, revised submission.

The most common failure is currently patches which don’t
apply (i.e. patches based on another git commit instead of the
lastest) and failing to compile on some Operating Systems.

Git Checkout / apply patches
The process starts with a patch submission to the mailing list.
Patchwork[5] will recognize the email as a patch, adds it to
the patchwork database and assigns a unique patch number.
Our CI system monitors Patchwork. Whenever a new patch
is detected, the first process is to guess if it’s a complete sub-
mission or a series of patches.

Recommended practice in the Quagga community is to
use git send-email for the patch submission. This will
make sure to avoid mailers reformatting (and corrupting) the
patches and enforces a well understood format. In case of
multiple commits in a single patch, git send-email will
number in the subject of the emails as XX/YY (i.e. 03/20 for
patch 3 in a series of 20). Our system can detect this and in
case of a series of patches waits for the series to be complete
before it’s submitted to the CI system.

Once a single patch or a complete series of patches is de-
tected, the patch (or the series of patches) is submitted. The
base is always assumed to be the latest master from git. We
want contributors to submit patches based on current code
and not old revisions. It’s also not possible to easy detect an-
other base git commit as there is no indication in the patch

email. (A fork model based on git pull requests would make
this easier)

The first step in the CI system is to apply the patches in
the correct order on top of the base commit and pack it up
as a source tar file together with a file describing some extra
information (Base Git commit, applied patch numbers, build
time, reference back to this specific CI run etc).

If the patch(es) fail to apply, then an email is generated as
seen in figure 3.

Figure 3: Sample of a CI response email on a failed patch

Build Packages on each OS
After the Source is packaged, the CI system starts up a VM
for several supported OS Distributions. The VM’s are reset
to a clean snapshot before the run.

At this time, we are building on:

• Ubuntu 12.04

• Ubuntu 14.04

• Debian 8

• CentOS 6

• CentOS 7

• FreeBSD 8

• FreeBSD 9

• FreeBSD 10

• NetBSD 6

• OpenBSD 5.8

• OmniOS (OpenSolaris)

On each system, the code is compiled, DejaGNU unit tests
executed and finally a test package built.

The major challenge here is to pick some good
configure options. Quagga can be built for many differ-
ent configurations with additional options turned on or off.
We pick 2 slightly different choices between the first pass to
just build it and the 2nd pass in the package build, but in both
cases, enabling all features.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

With Quagga supporting a large set of Operating Systems,
it is expected for this stage to frequently fail. Most contribu-
tors only test on their own OS. An example for a failed com-
pile error is seen in Figure 4.

Figure 4: CI response example email on a failed compile

Basic Routing Protocol checks
The basic protocol checks is a simple selection of 2 to 4 tests
out of the RFC Compliance suite for each protocol. This will
verify that each protocol is able to start and form a neighbor.
It also does some basic configuration commands as part of the
protocol checks as it needs to run scripts to use the CLI for
configuring the DUT.

Static Analyzer
In parallel to the Routing Protocol checks, we run a static an-
alyzer. Currently this is the Clang Static Analyzer[6]. The
result of the analyzer isn’t evaluated, but just collected. We
are still collecting ideas on how to translate the result of the
static analysis into some simple pass/fail criteria. One possi-
bility would be to just watch for changes in the output. The
static analyzer doesn’t require any dedicated or specialized
hardware. As such, we run it on some cheap virtual web host-
ing VM (They are frequently sold around $40/year which is
much cheaper than running it with the same number of CPU
cores and memory on our own Hardware.)

Full RFC Compliance
For the Full RFC Compliance check, we are using a com-
mercial Tool: Ixia IxANVL [3]. There are no open source
tools available as far as we know. This tool runs on a Linux
server, connecting to the DUT over multiple interfaces. It
simulates the various topologies required to test each section

of the RFCs. One of the main benefit of IxANVL is it’s dy-
namic configuration (using Expect scripts) of the DUT. At
the beginning of each Test, the tool logs into the DUT and
changes the configuration. This gives us a very good test of
the CLI as well. (Approx. 20% of the issues found are ac-
tually CLI issues because of the changes, i.e. crash when
something gets unconfigured). All the tests are based on the
previous test as well - there is no restart between the different
tests on the same routing protocol. It makes the analysis a bit
more difficult, but helps detecting bad state where a test may
pass, but puts the DUT into a partial broken state.

For long time archiving and comparison, we collect all the
logs (from the tester and from all the routing protocols and
the PCAP files from each test and archive them into a SQL
database. This allows an easy comparison against previous
version and to pull reports as seen in Figure 5.

Figure 5: First page of example report for BGP4 RFC Com-
pliance

Challenges of closed source testing tools In difference to
using Open Source tools, we aren’t allowed to share all the
information. In the case of IxANVL, Ixia describes their pro-
prietary knowhow in the way on how they run the tests and
less on their actual code itself. This means that we are pro-
hibited to share the exact test procedure with the community
members. This causes extra work for us to either find the bug

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

ourself or document it well enough without revealing the test
procedure.

The details as shown in Figure 5 are basically the parts we
can publish to the public.

In our case, using the closed source tool still makes sense
as we don’t have the resources to build something similar
from scratch and it helps us finding many errors. But we
strongly suggest any Open Source community to make sure
they are well aware of the limitations before picking closed
source testing tools.

Protocol Fuzzer Tests
In addition to the Tests described above, we run regular tests
with a Protocol Fuzzer (Spirent SPS-8000 - formerly part
of MUdynamics). The protocol fuzzer mainly helps us for
checking against potential DoS attacks by crashing the rout-
ing stack. Unfortunately, these tests take a very long time. A
run against multiple protocols and a majority of the features
can take 2 months of runtime. Part of the issue is that the
protocol fuzzer only has 4 ports for 4 tests in parallel. The
fuzzer we use knows the specific of the routing protocols and
sends constant bad packets with different permutations (i.e.
missing fields, fields too long, out of range, too short etc) and
verifies between tests if the DUT still works (by bringing up
a neighbor with the routing protocol. At this time, we don’t
publish the reports. There are basically 2 outcomes: No er-
rors found (and the results are not interesting) or a problem
found - which would be most likely a security issue which
needs to be addressed before publishing the details.

Protocol Scalability and Performance
Quagga isn’t a router - just the routing stack. Normal perfor-
mance measurements for forwarding of data make no sense,
but the performance of the route calculation, convergence and
scalability still need to be tested. At this time, we don’t
have them integrated into the CI system. Nevertheless we use
some Ixia Hardware Testers with IxNetwork [4] and a virtual
Spirent TestCenter [8] for some tests. Plans for the future is
to integrate these tests into the CI system.

Other testing considerations
We also try to avoid the issue where the same programmer
who implements the protocol writes the tests. The RFC stan-
dards are sometimes not specific enough (or a newer standard
or draft contradicts it) and it is important to get an indepen-
dent view to agree on the implementation.

On top of these issues, it’s a known issue that some large
vendors contradict the standards by choice (or mistake) and
it is sometimes more important to interoperate against them
than following the standard. To this extend, we are run-
ning the same tests against Cisco and compare uncertainties
against their implementation.

Testing at other similar Open Source Projects
Talking to other groups writing Open Source Routing code,
we seem to be at a unique position to be the only organization
to do any extensive testing. All of the other projects are only

testing against some commercial vendors, against themselves
(for scale) and sometimes against other open source tools.

The main issue is the lack of negative testing: There are
very specific rules on how to react to bad packets from cor-
recting, to ignoring packet and aborting the neighbor rela-
tionship. These tests can’t be easy done against a ”working”
implementation. As an example, in BGP, update messages
can have transitive flags and need to be forwarded unaltered
even if not understood. This can (and frequently does) cause
issues on the Internet where a bad update propagates and af-
fects networks far away from the source.

Summary - Challenges
In conclusion, the major challenges in our testing are:

• Make results trivial to understand. In difference to com-
mercial enterprises, there are always newcomers. Keeping
the result as trivial to understand as possible is important.
Even a failed result should be a good experience for a new-
comer: He should see what’s wrong, realize that he didn’t
waste the time from another community member and be
encouraged to send in a fixed version.

• Automate not just the tests, but the result parsing as well.
In our experience, automating the execution of a test is fre-
quently the trivial part, while the parsing of the result is the
difficult issue. Not all tools have a simple pass/fail result.
I.e. Static Analyzer may show false warnings which are
not easy to understand to someone seeing the output the
first time. Same is valid for performance numbers.

• Be careful with proprietary test tools. Make sure to under-
stand what part can be shared and reproduced by someone
else. It might be ok to share the data, but useless if the
community does not have the tools to reproduce the issues.
As an example, our Protocol Fuzzer offers an excellent so-
lution by having the capability to produce a Linux binary
for a single failing test case with the permission to share
this binary. This allows anyone else to reproduce the issue
found.

• Limited Open Source Tools. The market for users requir-
ing these tests are small. There are nearly no open source
tools available. Some commercial companies developed
their own tools in-house but generally refuse to share them.
Some protocols (i.e. BGP) have a few more choices avail-
able, but nothing exists for others (i.e. IS-IS).

• Cost of Test Equipment. Without generous donations and
loans, our job would be impossible. The cost of the test
equipment in our lab as required is generally prohibitive.

• Limit runtime to provide feedback. Running tests for days
or weeks before being able to give any feedback makes the
interaction between developers and the testing difficult or
impossible. We want to give feedback before the contribu-
tor moved on to the next project. At the time of the feed-
back, his memory should be still fresh and it should allow
him a quick turnaround time to send a fixed version.

• Parallel execution for features. Many features can be
tested in parallel. But running everything in parallel might
hide some bugs like bad initialization or not freeing some

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

memory. Running multiple tests on the same setup in se-
quence (with reconfiguration, but no restarting between)
helps finding these bugs.

• Parallel execution for OS While everyone talks about host-
ing VM’s in the cloud, the cost of many of these clouds are
prohibitive and the OS choices are too limited. Outside of
Linux, the choices for OS on hosted VM’s are limited. At
the same time, running the tests for every OS on our own
infrastructure is too expensive. We hope to expand the test-
ing, but soon approach a situation of 100’s of VM’s testing
in parallel for a single commit.

Author Biography
Martin Winter is a technical lead and cofounder of the Net-
work Device Education Foundation. His research interests in-
clude routing platforms, networked systems, and software en-
gineering as well as OpenSourceRouting, a non-profit project
to improve Quagga. Winter received a BS in computer sci-
ence from Brugg-Windisch HTL in Switzerland. He is co-
chair of the Open Source Working Group at RIPE (European
Internet Provider Forum).

Contact him at mwinter@netdef.org.

Questions?
For questions about testing contact the author at
mwinter@netdef.org. For other questions about
the Network Device Education Foundation (NetDEF)
or the OpenSourceRouting project, please contact
info@netdef.org

References
[1] Atlassian. Bamboo continuous inte-

gration, deployment and delivery system.
https://www.atlassian.com/software/bamboo.

[2] Free Software Foundation, Inc. Savannah soft-
ware forge for people committed to free software.
http://savannah.gnu.org/.

[3] Ixia. IxANVL automated network validation library.
http://www.ixiacom.com/products/ixanvl.

[4] Ixia. IxNetwork network topology testing and traffic
analysis. http://www.ixiacom.com/products/ixnetwork.

[5] Kerr, J. 2010. Patchwork web-based patch tracking sys-
tem. http://jk.ozlabs.org/projects/patchwork/.

[6] LLVM Project. Clang static analyzer. http://clang-
analyzer.llvm.org/.

[7] Quagga Community. Quagga routing protocol suite.
Homepage: http://quagga.net/ with official Git at
http://savannah.nongnu.org/git/?group=quagga.

[8] Spirent Communications. Virtual TestCenter layer
2-7 test, measurement and protocol emulation.
http://www.spirent.com/Products/TestCenter.

[9] The Jenkins Project. Jenkins open source automation
server. https://jenkins-ci.org/.

[10] Travis CI, GmbH. Travis CI. https://travis-ci.com/.

License

This paper is licensed under a Creative Com-
mons Attribution-ShareAlike 4.0 International License.
(http://creativecommons.org/licenses/by-sa/4.0/)

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

