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Motivation

Linux TCP/IP 
State-of-the-art features 

Cope with all the network conditions and traffic patterns 
FACK, FRTO, RACK, DSACK, Fast Open, DCTCP 

Various security enhancements (e.g., RFC5961) 
Out-of-tree: MPTCP, TcpCrypt 

User-space TCP/IP (e.g., Seastar) 
Fast due to a dedicated NIC to an app (netmap, 
DPDK) 

App-driven NIC I/O and network stack execution 
Direct packet buffer access
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Integrating the best aspects of both of the worlds
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Request-response traffic with: 
Small messages/packets at high rates 

Concurrent TCP connections 
Queueing delays

Problems
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Design Principles

Dedicate a NIC to a privileged app 
Similar to fast user-space TCP/IPs 

Use TCP/IP stack in the kernel 
Regular apps must be able to run on other 
NICs 
When the privileged app crashes, the 
system and the other apps must survive
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StackMap Overview

App registers a NIC  
Socket API for control 

socket(), bind(), listen() etc 
netmap API for datapath (alters read()/write())
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StackMap Datapath

Packet buffers are mapped to NIC rings, app 
and pre-allocated skbuffs 
App triggers NIC I/O via netmap API syscall 
The syscall processes data/packets in TCP/IP 

before (TX) or after (RX) NIC I/O
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Experimental Results

Implementation 
Linux 4.2 with 188 LoC changes 
netmap with 68 LoC changes 
A new kernel module with 2200 LoC 

Setup 
Two machines with 

Xeon E5-2680 v2 (2.8 Ghz) 
Intel 83599 10 GbE NIC 

Server: 
Linux (rx-usecs 1) or StackMap 

Client: 
Linux with wrk HTTP benchmark tool
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Basic Performance
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Memcached Performance
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Conclusion

Linux TCP/IP protocol processing is fast 
We can bring the most of techniques in user-space TCPs 
into Linux TCP/IP 
What makes StackMap fast? 

all the advantages of the netmap framework 
syscall batching 
memory allocator 

static but flexible packet buffer pool whose buffers 
can be dynamically linked to a NIC ring (without 
dma_(un)map_single()) 

I/O batching (more aggressive than xmit_more) 
no skb (de)allocation, no vfs layer 
synchronous execution of app and protocol processing
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Base Latency

Single HTTP request (97B) and response (1024B) latency  
Linux: rx-usec 0 with epoll_wait(timeout=0) 

23.05 us 43.64 MB 
Linux: rx-usec 0 with epoll_wait(timeout=-1) 

25.54 us 39.49 MB 
Linux: rx-usec 1 with epoll_wait(timeout=0) 

56.60 us 18.11 MB  
Linux: rx-usec 1 with epoll_wait(timeout=-1) 

56.67 us 18.11 MB 
Linux: rx-usec 1 with net.core.busy_poll=50 (poll()) 

23.02 us 43.76 MB 
StackMap (NIC polling) 

21.94 us (45.80 MB/s)
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