
Speeding up Linux TCP/IP
with a Fast Packet I/O
Framework

1

Michio Honda
Advanced Technology Group,
NetApp
michio@netapp.com

With acknowledge to Kenichi Yasukata,
Douglas Santry and Lars Eggert

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Motivation

Linux TCP/IP
State-of-the-art features

Cope with all the network conditions and traffic patterns
FACK, FRTO, RACK, DSACK, Fast Open, DCTCP

Various security enhancements (e.g., RFC5961)
Out-of-tree: MPTCP, TcpCrypt

User-space TCP/IP (e.g., Seastar)
Fast due to a dedicated NIC to an app (netmap,
DPDK)

App-driven NIC I/O and network stack execution
Direct packet buffer access

2

Integrating the best aspects of both of the worlds

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Request-response traffic with:
Small messages/packets at high rates

Concurrent TCP connections
Queueing delays

Problems

3

NIC

TCP
/IPtcp_sendmsg()

write()
epoll_wait()

tcp_sendmsg()

write()

tcp_sendmsg()

write()read()read()read() 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

D
es

cr
ip

to
rs

 [#
]

Concurrent TCP Connections

of descriptors returned by epoll_wait()

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

La
te

nc
y

[µ
s]

Concurrent TCP Connections

99th %ile latency
mean latency

rx-usecs 1 (default), 1024 B response message

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Design Principles

Dedicate a NIC to a privileged app
Similar to fast user-space TCP/IPs

Use TCP/IP stack in the kernel
Regular apps must be able to run on other
NICs
When the privileged app crashes, the
system and the other apps must survive

4

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

StackMap Overview

App registers a NIC
Socket API for control

socket(), bind(), listen() etc
netmap API for datapath (alters read()/write())

5

Drivers and NICsNIC NIC

Linux packet I/O
TCP/IP/Ethernet
Socket API netmap API/framework

packet buffers

regular app StackMap app

us
er

ke
rn

el

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

StackMap Datapath

Packet buffers are mapped to NIC rings, app
and pre-allocated skbuffs
App triggers NIC I/O via netmap API syscall
The syscall processes data/packets in TCP/IP

before (TX) or after (RX) NIC I/O

6

Drivers and NICsNIC NIC

Linux packet I/O
TCP/IP/Ethernet
Socket API netmap API/framework

packet buffers

regular app StackMap app

us
er

ke
rn

el

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Experimental Results

Implementation
Linux 4.2 with 188 LoC changes
netmap with 68 LoC changes
A new kernel module with 2200 LoC

Setup
Two machines with

Xeon E5-2680 v2 (2.8 Ghz)
Intel 83599 10 GbE NIC

Server:
Linux (rx-usecs 1) or StackMap

Client:
Linux with wrk HTTP benchmark tool

7

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Basic Performance

8

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

D
es

cr
ip

to
rs

 [#
]

Concurrent TCP Connections

Linux
StackMap

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

La
te

nc
y

[µ
s]

Concurrent TCP Connections

Linux (99th %ile)
Linux (mean)
StackMap (99th %ile)
StackMap (mean)

 0

 2

 4

 6

 8

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 [G

b/
s]

Concurrent TCP Connections

Linux
StackMap

Serving 1024 B HTTP OK
with a single CPU core

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Memcached Performance

9

Memcached with 10% set and 90 % get (1024 B objects, single CPU core)

 0

 1

 2

 3

1 4 8Th
ro

ug
hp

ut
 [G

b/
s]

CPU cores [#]

Linux
Seastar
StackMap

Memcached with 10% set and 90 % get (64 B objects, 60 concurrent TCP
connections)

 0
 1
 2
 3
 4

1 20 40 60 80 100Th
ro

ug
hp

ut
 [G

b/
s]

Concurrent TCP Connections

Linux
Seastar
StackMap

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Conclusion

Linux TCP/IP protocol processing is fast
We can bring the most of techniques in user-space TCPs
into Linux TCP/IP
What makes StackMap fast?

all the advantages of the netmap framework
syscall batching
memory allocator

static but flexible packet buffer pool whose buffers
can be dynamically linked to a NIC ring (without
dma_(un)map_single())

I/O batching (more aggressive than xmit_more)
no skb (de)allocation, no vfs layer
synchronous execution of app and protocol processing

10

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Base Latency

Single HTTP request (97B) and response (1024B) latency
Linux: rx-usec 0 with epoll_wait(timeout=0)

23.05 us 43.64 MB
Linux: rx-usec 0 with epoll_wait(timeout=-1)

25.54 us 39.49 MB
Linux: rx-usec 1 with epoll_wait(timeout=0)

56.60 us 18.11 MB
Linux: rx-usec 1 with epoll_wait(timeout=-1)

56.67 us 18.11 MB
Linux: rx-usec 1 with net.core.busy_poll=50 (poll())

23.02 us 43.76 MB
StackMap (NIC polling)

21.94 us (45.80 MB/s)
11

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

