
Linux Bridge, l2-overlays,
E-VPN!

Roopa Prabhu
Cumulus Networks

2

This tutorial is about ...

● Linux bridge at the center of data center Layer-2
deployments

● Deploying Layer-2 network virtualization overlays with
Linux

● Linux hardware vxlan tunnel end points

● Ethernet VPN’s: BGP as a control plane for Network
virtualization overlays

3

Tutorial Focus/Goals ..

• Outline and document Layer-2 deployment models with
Linux bridge

• Focus is on Data center deployments
▪ All Examples are from a TOR (Top-of-the-rack)

switch running Linux Bridge

4

Tutorial flow ...
Data
center
Layer-2
networks

Linux
bridge

Layer-2
overlay
networks

Linux
bridge and
Vxlan

E-VPN: BGP
control plane
for overlay
networks

Linux bridge
and E-VPN

5

Data Center Network Basics

• Racks of servers grouped into PODs
• Vlans, Subnets stretched across Racks or POD’s
• Overview of data center network designs [1]

▪ Layer 2
▪ Hybrid layer 2-3
▪ Layer 3

• Modern Data center networks:
▪ Clos Topology [2]
▪ Layer 3 or Hybrid Layer 2-3

6

Modern Data center network
SPINE

LEAF/TOR

7

Hybrid layer-2 - layer-3 data center network
SPINE

LEAF (TOR) Layer2-3 boundary

Layer-2
gateway

8

Layer-3 only data center network
SPINE

LEAF (TOR) layer-3 boundary

Layer-3
gateway

9

Layer-2 Gateways with Linux Bridge

10

Layer-2 Gateways with Linux Bridge

• Connect layer-2 segments with bridge
• Bridge within same vlans
• TOR switch can be your L2 gateway
bridging between vlans on the servers in the
same rack

11

What do you need ?

• TOR switches running Linux Bridge
• Switch ports are bridge ports
• Bridge vlan filtering or non-vlan filtering mode:

• Linux bridge supports two modes:
• A more modern scalable vlan filtering mode
• Or old traditional non-vlan filtering mode

12

Layer-2 switching within a vlan

bridge bridge

swp1.100 swp2.100 swp1 swp2

vlan: 100 vlan: 100,

Non-vlan filtering bridge

swp1 swp2

vlan filtering bridge

13

Routing between vlans

Bridge10
10.0.1.20

bridge

swp1.10 swp2.10

swp1 swp2

vlan: 10 vlan: 20

Bridge20
10.0.3.20

swp1.20 swp2.20

Bridge.10
10.0.1.20

Bridge.20
10.0.3.20

swp1 swp2

Non-vlan filtering bridge vlan filtering bridge

14

Scaling with Linux bridge

A vlan filtering bridge results in less number of overall
net-devices
Example: Deploying 2000 vlans 1-2000 on 32 ports:
• non-Vlan filtering bridge:

▪ Ports + 2000 vlan devices per port + 2000 bridge
devices

▪ 32 + 2000 * 32 + 2000 = 66032
• Vlan filtering bridge:

▪ 32 ports + 1 bridge device + 2000 vlan devices on
bridge for routing

▪ 32 + 1 + 2000 = 2033 netdevices

15

L2 gateway on the TOR with Linux bridge
Spine

 Hosts Rack1

swp2 swp2

Host/VM 1
Mac1,

VLAN-10
Host/VM 2

mac2, VLAN-20

Leaf1 Leaf2 Leaf3

 Hosts Rack2 Hosts Rack3

Host/VM 3
mac3, VLAN-30

bridge bridge bridge

swp2swp1 swp1 swp1
leaf1 leaf2 leaf3

bridge.10 bridge.20 bridge.30

Host/VM 11
Mac11, VLAN-10

Host/VM 22
mac22, VLAN-20 Host/VM 33

mac33, VLAN-30

- leaf* are l2
gateways
- Bridge within the
same vlan and
rack and route
between vlans
- bridge.* vlan
interfaces are
used for routing

16

Bridge features and flags

• Learning
• Igmp Snooping
• Selective control of broadcast, multicast and unknown

unicast traffic
• Arp and ND proxying
• STP

17

Note: for the rest of this tutorial we will
only use the vlan filtering bridge for
simplicity.

18

Layer-2 - Overlay Networks

19

Overlay networks basics

• Overlay networks are an approach for providing
network virtualization services to a set of Tenant
Systems (TSs)

• Overlay networks achieve network virtualization by
overlaying layer 2 networks over physical layer 3
networks

20

Network Virtualization End-points

• Network virtualization endpoints (NVE) provide a logical
interconnect between Tenant Systems that belong to a
specific Virtual network (VN)

• NVE implements the overlay protocol (eg: vxlan)

21

NVE Types

• Layer-2 NVE
▪ Tenant Systems appear to be interconnected by a

LAN environment over an L3 underlay

• Layer-3 NVE
▪ An L3 NVE provides virtualized IP forwarding

service, similar to IP VPN

22

Overlay network

L3 underlay network

NVE NVE

TS TS

23

Why Overlay networks ?

• Isolation between tenant systems
• Stretch layer-2 networks across racks, POD’s, inter or

intra data centers
▪ Layer-2 networks are stretched

• To allow VM’s talking over same broadcast domain
to continue after VM mobility without changing
network configuration

• In many cases this is also needed due to Software
licensing tied to mac-addresses

24

Why Overlay networks ? (Continued)

• Leverage benefits of L3 networks while maintaining L2
reachability

• Cloud computing demands:
▪ Multi tenancy
▪ Abstract physical resources to enable sharing

25

NVE deployment options

Overlay network end-points (NVE) can be deployed on
• The host or hypervisor or container OS (System

where Tenant systems are located)

OR
• On the Top-of-the-rack (TOR) switch

26

VTEP on the servers or the TOR ?

Vxlan tunnel endpoint on the
servers:

• Hypervisor or container
orchestration systems
can directly map tenants
to VNI

• Works very well in a
pure layer-3 datacenter:
terminate VNI on the
servers

Vxlan tunnel endpoint on the
TOR:

• A TOR can act as a l2
overlay gateway mapping
tenants to VNI

• Vxlan encap and decap at
line rate in hardware

• Tenants are mapped to
vlans. Vlans are mapped
to VNI at TOR

27

Layer-2 Overlay network dataplane: vxlan

• VNI - virtual network identifier (24 bit)
• Vxlan tunnel endpoints (VTEPS) encap and decap vxlan

packets
• VTEP has a routable ip address
• Linux vxlan driver
• Tenant to vni mapping

28

Vxlan tunnel end-point on the hypervisor
SPINE

LEAF (TOR) layer-3 boundary

Layer-3
gateway or
overlay gateway

Vteps on
hypervisor

29

Vxlan tunnel end-point on the TOR switch
SPINE

LEAF (TOR) Layer2-3 boundary

Layer-2 overlay
gateway: vxlan
vteps

Vlans on the
hypervisors

30

Linux vxlan tunnel end point (layer-3)

• Tenant systems directly mapped to VNI

L3 underlay
vxlan

L3 gateway

Tenant
systems

Tenant
systems

L3 gateway

Vxlan driver Vxlan driver

vxlan

31

Linux Layer-2 overlay gateway: vxlan

• Tenant systems mapped to vlans
• Linux bridge on the TOR maps vlans to vni

Linux bridge
(gateway)

Linux bridge
(gateway)L3 overlay

vlans

vxlan vxlan
Vxlan
driver

Vxlan
driver

Tenant
systems

Tenant
systems

Vlans-to-vxlan
vxlan-to-vlans

Vlans-to-vxlan
vxlan-to-vlans

vlans

32

FDB Learning options

• Flood and learn (default)
• Control plane learning
▪ Control plane protocols disseminate end

point address mappings to vteps
▪ Typically done via a controller

• Static mac install via orchestration tools

33

Layer-2 overlay gateway tunnel fdb tables

Linux bridge Driver

Local port remote tunnel port

Local port
Tunnel driver

Vlan mapped
to tunnel id

● LInux bridge and tunnel endpoints maintain separate fdb tables
● Linux bridge fdb table contains all macs in the stretched L2 segment
● Tunnel end point fdb table contains remote dst reachability information

Remote dst fdb table

fdb table

Vlan

34

Bridge and vxlan driver fdb

Bridge fdb

<local_mac>, <vlan>, <local_port>
<remote_mac>, <vlan>, <vxlan port>

Local port
Vxlan fdb
<remote_mac>, <vni>, <remote vtep dst>

Vlan is mapped
to vni

● Vxlan fdb is an extension of bridge fdb table with additional remote dst
entry info per fdb entry

● Vlan entry in bridge fdb entry maps to vni in vxlan fdb

35

Broadcast, unknown unicast and multicast
traffic (BUM)

• An l2 network by default floods unknown traffic
• Unnecessary traffic leads to wasted bw and cpu cycles
• This is aggravated when l2 networks are stretched to

larger areas: across racks, POD’s or data centers
• Various optimizations can be considered in such l2

stretched overlay networks

36

Bridge driver handling of BUM traffic

Bridge driver has separate controls

• To drop broadcast, unknown unicast and multicast
traffic

37

Vxlan driver handling of BUM traffic

• Multicast:
▪ Use a multicast group to forward BUM traffic to registered vteps

• Multicast group can be specified during creation of the vxlan
device

• Head end replication:
• Default remote vtep list to replicate a BUM traffic to
• Can be specified by a vxlan all-zero fdb entry pointing to a

remote vtep list
• Flood: simply flood to all remote ports

▪ Control plane can minimize flood by making sure every vtep knows
remote end-points it cares about

•

38

Vxlan netdev types

• A traditional vxlan netdev
▪ Deployed with one netdev per vni
▪ Each vxlan netdev maintains forwarding database (fdb)

for its vni
• Fdb entries hashed by mac

• Recent kernels support ability to deploy a single vxlan
netdev for all VNI’s
▪ Such a mode is called collect_metadata or LWT mode
▪ A single forwarding database (fdb) for all VNI’s
▪ Fdb entries are hashed by <mac, VNI>

39

 Linux L2 vxlan overlay gateway example

40

Building an Linux l2 overlay gateway

• Vxlan tunnel netdevice(s) for encap and decap
• Linux bridge device with local and vxlan ports
• Bridge maps Vlan to vni
• Bridge switches

▪ Vlan traffic from local to remote vxlan ports
▪ Remote traffic from vxlan ports to local vlan ports

41

Recipe-1
[one vxlan netdev per vni
Example shows leaf1 config]

42

Recipe 1: create all your netdevs

$ # create bridge device:

$ ip link add type bridge dev bridge

$ # create vxlan netdev:

$ ip link add type vxlan dev vxlan-10 vni 10 local 10.1.1.1

$ # enslave local and remote ports

$ ip link set dev vxlan-10 master bridge

$ ip link set dev swp1 master bridge

43

Recipe 1: Configure vlan filtering and vlans

$ #configure vlan filtering on bridge

$ ip link set dev bridge type bridge vlan_filtering 1

$ #configure vlans

$ bridge vlan add vid 10 dev vxlan-10

$ bridge vlan add vid 10 untagged pvid dev vxlan-10

$ bridge vlan add vid 10 dev swp1

44

Recipe 1: Add default fdb entries

$ # add your default remote dst forwarding entry

$ bridge fdb add 00:00:00:00:00:00 dev vxlan-10 dst 10.1.1.2
self permanent

$ bridge fdb add 00:00:00:00:00:00 dev vx-10 dst 10.1.1.3
self permanent

45

Recipe 1: Here's how it all looks
Spine

 L3 Underlay

 Hosts Rack1

vxlan-10
10.1.1.1

vxlan-10
10.1.1.2

Host/VM 1
Mac1, VLAN-10

Host/VM 2
mac2, VLAN-10

Leaf1 Leaf2 Leaf3

 Hosts Rack2 Hosts Rack3

Host/VM 3
mac3, VLAN-10

bridge bridge bridge

vxlan-10
10.1.1.3

$bridge fdb show
mac1 dev swp1 vlan 10 master bridge
mac2 dev vxlan-10 vlan 10 master bridge
mac2 vxlan-10 dst 10.1.1.2 self
mac3 dev vxlan-10 vlan 10 master bridge
mac3 dev vxlan-10 dst 10.1.1.3 self

$bridge fdb show
mac3 dev swp1 vlan 10 master bridge
mac2 dev vxlan-10 vlan 10 master bridge
mac2 vxlan-10 dst 10.1.1.2 self
mac1 dev vxlan-10 vlan 10 master bridge
mac1 dev vxlan-10 dst 10.1.1.3 self

swp1 swp1 swp1

VXLAN
Tunnel

leaf1 leaf2 leaf3

46

Zoom into the bridge config on the TOR
switches

bridge

swp1

vlan: 10 vlan: 10

$bridge vlan show
port vlan ids
swp1 1 PVID Egress Untagged
 10

vxlan-10 10 PVID Egress Untagged
 10

vxlan-10

● Vlan 10 is mapped to vxlan vni 10

47

Zoom into bridge and vxlan driver fdb tables

Bridge fdb:
mac1 dev swp1 vlan 10 master bridge
mac2 dev vxlan-10 vlan 10 master bridge
mac3 dev vxlan-10 vlan 10 master bridge

swp1
Vxlan-10 fdb:
mac2 dev vxlan-10 dst 10.1.1.2 self
mac3 dev vxlan-10 dst 10.1.1.3 self

Vlan is mapped
to vni

● Vxlan fdb is an extension of bridge fdb table with additional remote dst
info per fdb entry

● Vlan entry in bridge fdb entry maps to vni in vxlan fdb

48

Recipe 1: check your running kernel state

$ ip link show master bridge

$ bridge vlan show

port vlan ids

vxlan-10 10 PVID Egress Untagged

swp1 1 PVID Egress Untagged

 10

bridge None

$ bridge fdb show
mac1 dev swp1 vlan 10 master bridge
mac2 dev vxlan-10 vlan 10 master bridge
mac2 vxlan-10 dst 10.1.1.2 self
mac3 dev vxlan-10 vlan 10 master bridge
mac3 dev vxlan-10 dst 10.1.1.3 self

$ # check bridge flags
$ ip -d link show dev bridge

49

Recipe-2
(With single vxlan netdev
 Example shows leaf1 config)

50

Recipe 2: create all your netdevs

$ # create bridge device:

$ ip link add type bridge dev bridge

$ # create vxlan netdev:

$ ip link add type vxlan dev vxlan0 external local 10.0.1.1

$ # enslave local and remote ports

$ ip link set dev vxlan0 master bridge

$ ip link set dev swp1 master bridge

51

Recipe 2: Enable vlan filtering and vlan_tunnel
mode

$ #configure vlan filtering on bridge

$ ip link set dev bridge type bridge vlan_filtering 1

$ # enable tunnel mode on the vxlan tunnel bridge ports

$ bridge link set dev vxlan0 vlan_tunnel on

52

Recipe 2: configure vlans

$ #configure vlans

$ bridge vlan add vid 10 dev vxlan0

$ bridge vlan add vid 10 dev swp1

$ # set tunnel mappings on the ports per vlan

$ # map vlan 10 to tunnel id 10 (in this case vni 10)

$ bridge vlan add dev vxlan0 vid 10 tunnel_info id 10

53

Recipe 2: configure default fdb entries

$ # add your default remote dst forwarding entry

$ bridge fdb add 00:00:00:00:00:00 dev vxlan0 vni 10 dst
10.1.1.2 self permanent

$ bridge fdb add 00:00:00:00:00:00 dev vxlan0 vni 10 dst
10.1.1.3 self permanent

54

Recipe 2: Here's how it all looks
Spine

 L3 Underlay

 Hosts Rack1

vxlan0
10.1.1.1

vxlan0
10.1.1.2

Host/VM 1
mac1, VLAN-10

Host/VM 2
mac2, VLAN-10

Leaf1 Leaf2 Leaf3

 Hosts Rack2 Hosts Rack3

Host/VM 3
mac3, VLAN-10

bridge bridge bridge

vxlan0
10.1.1.3

$bridge fdb show
mac1 dev swp1 vlan 10 master bridge
mac2 dev vxlan0 vlan 10 master bridge
mac2 dev vxlan0 vni 10 dst 10.1.1.2 self
mac3 dev vxlan0 vlan 10 master bridge
mac3 dev vxlan0 vlan 10 dst 10.1.1.3 self

$bridge fdb show
mac3 dev swp1 vlan 10 master bridge
mac2 dev vxlan0 vlan 10 master bridge
mac2 dev vxlan0 vni 10 dst 10.1.1.2 self
mac1 dev vxlan0 vlan 10 master bridge
mac1 dev vxlan0 vni 10 dst 10.1.1.3 self

swp1 swp1 swp1

VXLAN
Tunnel

leaf1 leaf2 leaf3

55

Zoom into the bridge config on the leaf switches

bridge

swp1

vlan: 10 vlan: 10

$bridge vlan show
port vlan ids
swp1 1 PVID Egress Untagged
 10

vxlan0 1 PVID Egress Untagged
 10

vxlan0

● Vlan 10 is mapped to vxlan vni 10

$bridge vlan tunnelshow
port vlan id tunnel id
Vxlan0 10 10

56

Recipe 2: check your running kernel state

$ bridge vlan show

port vlan ids

vxlan0 1 PVID Egress Untagged

 10

swp1 1 PVID Egress Untagged

 10

bridge None

$ bridge vlan tunnelshow
port vlan id tunnel id
Vxlan0 10 10

$ bridge fdb show
mac1 dev swp1 vlan 10 master bridge
mac2 dev vxlan0 vlan 10 master bridge
mac2 vxlan0 dst 10.1.1.2 self
mac3 dev vxlan0 vlan 10 master bridge
mac3 dev vxlan0 dst 10.1.1.3 self

$ ip -d link show dev bridge

57

Zoom into bridge and vxlan driver fdb tables

Bridge fdb:
mac1 dev swp1 vlan 10 master bridge
mac2 dev vxlan0 vlan 10 master bridge
mac3 dev vxlan0 vlan 10 master bridge

swp1
Vxlan0 fdb:
mac2 dev vxlan0 vni 10 dst 10.1.1.2 self
mac3 dev vxlan0 vni 10 dst 10.1.1.3 self

Vlan is mapped
to vni

● Vxlan fdb is an extension of bridge fdb table with additional remote dst
info per fdb entry

● Vlan entry in bridge fdb entry maps to vni in vxlan fdb

58

Other Network Virtualization Technologies

• Other overlay data planes:
▪ Geneve, NVGRE, STT

• ILA - Identifier Locator Addressing
▪ Wise Tom Herbert says ‘Move to Ipv6 and use ILA

for native network virtualization’ :)

59

Summary overlays:

• Flood and learn by default
• Controllers can be used to disseminate MAC addresses

to avoid flooding
• Distributed controllers win over Centralized controllers
• Many controller solutions available: some proprietary
• Need for an Open Standards based controller: Lets dive

into the next section which does just that

60

Ethernet VPNs (E-VPNS)

61

What are E-VPNs ?

• Ethernet VPN i.e. another form of Layer-2 VPN
▪ L2-VPN’s are virtual private networks carrying

layer-2 traffic
▪ Different from VPLS [5, 6]
▪ Used to separate tenants at Layer-2

• Original EVPN RFC 7432: [7]
▪ BGP MPLS-based Ethernet VPN
▪ Requirements defined in RFC 7209 [8]

62

Why E-VPN ?

• Overcome limitations of prior L2-VPN technologies like
VPLS

• Support for multihoming and redundancy

• Control plane learning: No flooding

• Supports multiple data plane encapsulations

• Various optimizations
▪ Multicast optimization
▪ ARP-ND broadcast handling

63

Evpn use-cases

• Initially introduced to support l2 vpn provider services
to customers

• Multi-tenant hosting
• Stretch L2 across POD’s in the data center
• Data center interconnect (DCI) technology

▪ Stretch l2 across data centers

64

In this tutorial we look at BGP based E-VPN as a
distributed controller for layer-2 network
virtualization

65

E-VPN is adopted in the data center with “vxlan”

 overlay. This tutorial will focus on

BGP-Vxlan based E-vpn.

66

New RFC’s to adopt E-VPN in the data center

• A network virtualization overlay solution using E-VPN [3]

• BGP based control plane for Vxlan
•

67

Border Gateway Protocol (BGP)

• Routing protocol of the internet
• A typical BGP implementation [10] on Linux installs routes

kernel FIB to install routes
• With E-VPN, we are telling BGP to also look at layer-2

forwarding entries in the kernel and distribute to peers

68

BGP E-VPN

• BGP runs on each Vtep
• Peers with BGp on other Vteps
• Exchanges local Mac and Mac/IP routes with peers
• Exchanges VNI’s each VTEP is interested in
• Tracks mac address moves for faster convergence
• Type of Information exchanged is tagged by ‘Route

types’
▪ MAC or MAC-IP routes are Type 2 routes
▪ BUM replication list exchanged via Type 3 routes

69

• In this tutorial we will only focus on E-VPN
on the data center TOR switches

 running Linux.

70

E-VPN flow (distribute macs)
Spine

 L3 Underlay

 Hosts Rack1

vxlan-10
10.1.1.1

vxlan-10
10.1.1.2

Host/VM 1
mac1, IP1
VLAN-10

Host/VM 2
mac2 IP2
VLAN-10

Leaf1 Leaf2 Leaf3

 Hosts Rack2 Hosts Rack3

Host/VM 3
mac3, IP3
 VLAN-10

bridge bridge bridge

vxlan-10
10.1.1.3swp1 swp1 swp1

VXLAN
Tunnel

leaf1 leaf2 leaf3

BGP

(a) BGP discovers local vlan-vni
mapping via netlink

(b) BGP reads local bridge <mac,
vlan> entries and distributes
them to bgp E-vpn peers

(c) BGP learns remote <mac,
vni> entries from E-VPN
peers and installs them in the
kernel bridge fdb table

(d) Kernel bridge fdb table has
all local and remote mac’s
for forwarding

BGPBGP

(a) Bridge learns
local <mac,
vlan> in its fdb

71

Arp And ND suppression

• ARP and ND traffic is by default flooded to all nodes in
the broadcast domain

• “Arp and ND suppression” is an E-VPN function
▪ To reduce Arp and ND flooded traffic in such large

broadcast domains
▪ ARP broadcast traffic problems in large data

center are described here [4]
• BGP E-VPN control plane knows remote IP-MAC’s

▪ These remote MAC-IP’s can be used to proxy local
ARP-ND requests

72

Linux Bridge Arp And ND suppression for E-VPN

• BGP exchanges local MAC-IP’s with E-VPN peers as Type
2 MAC-IP routes

• BGP installs remote MAC-IP’s from E-VPN peers in the
kernel neigh table

• Linux bridge driver uses remote MAC-IP’s (neigh entries)
installed by E-VPN to proxy requests for MAC-IP from
local end hosts

• For a MAC-IP entry not present in the neigh table,
▪ bridge driver floods such requests to all ports in that

vlan/vni

73

E-VPN flow: arp nd suppression (distribute mac +
ip)

Spine

 L3 Overlay

 Hosts Rack1

vxlan-10
10.1.1.1

vxlan-10
10.1.1.2

Host/VM 1
mac11, IP1
VLAN-10

Host/VM 2
mac2, IP2,
VLAN-10

Leaf1 Leaf2 Leaf3

 Hosts Rack2 Hosts Rack3

Host/VM 3
Mac3, IP3
VLAN-10

bridge bridge bridge
vxlan-10
10.1.1.3swp1 swp1 swp1

VXLAN
Tunnel

leaf1 leaf2 leaf3

BGP

(a) BGP discovers local vlan-vni
mapping via netlink

(b) BGP reads local <mac, ip,
vlan> entries and distributes
them to bgp E-vpn peers

(c) BGP learns remote <mac, ip,
vni> entries from E-VPN
peers and installs them in the
kernel neigh table

(d) Kernel neigh table has all local
and remote <mac + ip> for
proxying neigh discovery
msgs

BGPBGP

(a) Local snooper process
snoops <mac, ip> on
local ports and adds
them to the kernel
neigh table

bridge.10 bridge.10 bridge.10

74

Deploying E-VPN with Linux Bridge

75

Deploy Linux bridge with Tunnel vxlan ports

• Deploy Linux bridge with Tunnel vxlan ports as described
previously in the tutorial

• Run BGP on each VTEP
• Configure BGP for E-VPN: example FRR config [13]
• Run local snooper process: to snoop local end-point macs

and add to the bridge fdb table
• BGP Listens to neigh notifications and distributes local

macs
• BGP adds remote macs from peer with

NTF_EXT_LEARNED

76

Following example only covers a
vxlan device per VNI.

77

Create all your netdevs (iproute2)

$ # create bridge device:

$ ip link add type bridge dev bridge

$ # create vxlan netdev:

$ ip link add type vxlan dev vxlan-10

$ # enslave local and remote ports

$ ip link set dev vxlan-10 master bridge

$ ip link set dev swp1 master bridge

(see ifupdown2 [12] example in References section [14])

78

Create additional netdevs for neigh entries
(E-VPN MAC-IP routes)
 $ # E-VPN MAC-IP entries (neigh entries) are installed per VNI and

 $ # hence per vlan. Hence create per vlan bridge entries for MAC-IP

$ # ie. create vlan devices on bridge

$ ip link add type vlan dev bridge.10

$ # create vxlan netdev:

$ ip link add type vxlan dev vxlan-10

$ # enslave local and remote ports

$ ip link set dev vxlan-10 master bridge

$ ip link set dev swp1 master bridge

79

Configure vlans

 $ ip link set dev bridge type bridge vlan_filtering 1

$ #configure vlans

$ bridge vlan add vid 10 dev vxlan-10

$ bridge vlan add vid 10 untagged pvid dev vxlan-10

$ bridge vlan add vid 10 dev swp1

$ bridge vlan add vid 10 dev swp1

$ # Default fdb entries for BUM replication are installed
by BGP

80

E-VPN specific config
$ #turn off learning on tunnel ports (MAC’s are learnt by BGP)

$ bridge link set dev vxlan-10 learning off

turn on neigh suppression on tunnel ports

$ bridge link set dev vxlan-10 neigh_suppress on

$ # you can further turn off flooding completely on tunnel ports

$ # set unknown unicast flood off

$ bridge link set dev vxlan-10 flood off

$ # set multicast flood off

$ bridge link set dev vxlan-10 mcast_flood off

81

Check Config

$ # Check bridge port flags to make sure all required flags are on

$ bridge -d link show dev vxlan-10

82

Check your kernel vlan, fdb and neigh state

$ bridge vlan show

port vlan ids

vxlan-10 1 PVID Egress Untagged

 10

swp1 10 PVID Egress Untagged

 10

bridge None

$ bridge fdb show
mac1 dev swp1 vlan 10 master bridge
mac2 dev vxlan0 vlan 10 master bridge extern_learn
mac2 vxlan0 dst 10.1.1.2 self ext_learn
mac3 dev vxlan0 vlan 10 master bridge extern_learn
mac3 dev vxlan0 dst 10.1.1.3 self extern_learn

$ ip neigh show
IP1 mac1 dev swp1
IP2 mac2 dev vxlan-10

83

Troubleshooting and Debugging ..

84

Most common problems

• Fdb entries missing from kernel due to control plane
netlink errors

• Fdb entries overwritten by learn from hardware or
dynamic learn by the bridge or vxlan driver in kernel

• End-point mobility problems:
▪ remote end-point or tenant system reachable via

vxlan may move to a locally connected node
▪ Bridge fdb and vxlan fdb must be kept in sync to

avoid black hole or incorrect forwarding behavior

85

Debugging using iproute2 and perf probes

• Dumping bridge and tunnel fdb tables:
• $bridge fdb show

• Both bridge and vxlan fdb tables are dumped
• Vxlan fdb entries are qualified by dev =

<vxlan_dev> and flag ‘self’
• Monitoring bridge link and fdb events:
• $bridge monitor [link | fdb]
• In recent kernels use bridge perf tracepoints:

• $perf probe --add bridge:*

86

References

[1] Data center networks: https://tools.ietf.org/html/rfc7938#section-4

[2] Data center clos topology: https://tools.ietf.org/html/rfc7938#section-3.2

[3] A Network Virtualization Overlay Solution using EVPN:
https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-08

[4] Address resolution problems in large data centers:
https://tools.ietf.org/html/rfc6820

[5] Framework for Layer 2 Virtual Private Networks (L2VPNs)
https://tools.ietf.org/html/rfc4664

[6] VPLS rfc : https://tools.ietf.org/html/rfc4762

https://tools.ietf.org/html/rfc7938#section-4
https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-08
https://tools.ietf.org/html/rfc6820
https://tools.ietf.org/html/rfc4664
https://tools.ietf.org/html/rfc4762

87

References (Continued)

[7] BGP MPLS based E-VPN: https://www.rfc-editor.org/rfc/rfc7432.txt

[8] Requirements for E-VPN: https://tools.ietf.org/html/rfc7209

[9] E-VPN ARP and ND proxy:
https://tools.ietf.org/html/draft-ietf-bess-evpn-proxy-arp-nd-03

[10] Free range routing (FRR): https://frrouting.org/

[11] E-VPN webinar by Dinesh Dutt:
http://go.cumulusnetworks.com/l/32472/2017-09-22/95t27t

[12] Ifupdown2: https://github.com/CumulusNetworks/ifupdown2

https://www.rfc-editor.org/rfc/rfc7432.txt
https://tools.ietf.org/html/draft-ietf-bess-evpn-proxy-arp-nd-03
https://frrouting.org/
http://go.cumulusnetworks.com/l/32472/2017-09-22/95t27t

88

[13] BGP Config for switches (FRR implementation)

LEAF switch config

router bgp 65456
bgp router-id 27.0.0.21
neighbor fabric peer-group
neighbor fabric remote-as external
neighbor uplink-1 interface peer-group fabric

 neighbor uplink-2 interface peer-group fabric
 address-family ipv4 unicast

 neighbor fabric activate
 redistribute connected

 address-family l2vpn evpn
 neighbor fabric activate
 advertise-all-vni

SPINE switch config

router bgp 65535
bgp router-id 27.0.0.21
neighbor fabric peer-group
neighbor fabric remote-as external
neighbor swp1 interface peer-group fabric
neighbor swp2 interface peer-group fabric
address-family ipv4 unicast
 neighbor fabric activate
 redistribute connected
address-family l2vpn evpn
 neighbor fabric activate

89

[14] Ifupdown2 config for E-VPN on LEAF switches

/etc/network/interfaces
example shows one vxlan device per vni

auto vxlan-10
iface vxlan-10
 vxlan-id 10
 bridge-access 10
 vxlan-local-tunnelip 10.1.1.1
 bridge-learning off
 bridge-arp-nd-suppress on
 mstpctl-portbpdufilter yes
 mstpctl-bpduguard yes
 mtu 9152

/etc/network/interfaces
vxlan device per vni

auto bridge
iface bridge
 bridge-vlan-aware yes
 bridge-ports vxlan-10 swp1
 bridge-stp on
 bridge-vids 10
 bridge-pvid 1

auto bridge.10
iface bridge.10

90

Thank you!

