
1

Network stack personality in

Android phone

Cristina Opriceana, Hajime Tazaki (IIJ Research Lab.)

Linux netdev 2.2, Seoul, Korea

08 Nov. 2017

2

Librarified Linux taLks (LLL)
Userspace network stack (NUSE) in general (netdev0.1)
kernel CI with libos and ns-3 (netdev1.1)
Network performance improvement of LKL (netdev1.2, by Jerry Chu)
How bad/good with LKL and hrtimer (BBR) (netdev2.1)
Updating Android network stack (netdev2.2)

3

Android

a platform of billions devices

billions installed Linux kernel

Questions

When our upstreamed code
available ?
What if I come up with
a great protocol ?

https://developer.android.com/about/dashboards/index.html

https://developer.android.com/about/dashboards/index.html

4

Android (cont'd)
When our upstreamed code available ?

wait until base kernel is upgraded
backport specific function

What if I come up with a great protocol ?

craft your own kernel and put into your image

Long delivery to all billions devices

Approaches to alleviate the issue
Virtualization (KVM on Android)

Overhead isn't negligible to embedded devices
Project Treble (since Android O)

More modular platform implementation
Fushia

Rewrite OS from scratch
QUIC (transport over UDP)

Rewrite transport protocols on UDP

https://source android com/devices/architecture/treble

https://source.android.com/devices/architecture/treble

5

https://source.android.com/devices/architecture/treble

6

An alternate approach
network stack personality

use own network stack implemented in userspace
no need to replace host kernels
but (try to) preserve the application compatibility

NUSE (network stack in userspace)

No delay of network stack update
Application can choose a network stack if needed

https://source.android.com/devices/architecture/treble

7

Userspace implementations
Toys, Misguided People Selfish

Motivation
Trying to present that a Toy is practically useful

8

Linux Kernel Library intro (again)
Out-of-tree architecture
(h/w-independent)
Run Linux code on various ways

with a reusable library
h/w dependent layer

on Linux/Windows
/FreeBSD uspace,
unikernel, on UEFI,
network simulator (ns-3)
Android

9

LKL: current status
Sent RFC (Nov. 2015)

no update on LKML since then
have evolved a lot

fast syscall path
offload (csum, TSO/LRO)
CONFIG_SMP (WIP)
json config
qemu baremetal (unikernel)
on UEFI

https://github.com/lkl/linux

https://github.com/lkl/linux

10

Extensions to LKL

Android (arm/arm64) support (lkl/linux#372)
raw socket extension (only handle ETH_P_IP) (not upstreamed yet)
hijack library enhance (not upstreamed yet)

11

HOWTO
% LD_PRELOAD=liblkl-hijack.so netperf XXX # console app
% setprop wrap.app LD_PRELOAD=liblkl-hijack.so # Java app

{
"gateway": "10.206.211.1",
"interfaces": [
 {
 "ifgateway": "202.214.86.129",
 "ip": "202.214.86.168",
 "mac": "02:87:f8:27:22:02",
 "masklen": "26",
 "param": "/dev/tap23",
 "type": "macvtap"
 }
],
"debug": "0",
"singlecpu": "1",
"delay_main": "500000",
"sysctl": "net.ipv4.tcp_wmem=4096 87380 2147483647;net.mptcp.mptcp_debu
}

12

hijack library
For smooth replacement (i.e., hijack) for Android UI app syscalls
(java-based)

bionic is more familiar than glibc
only socket-related calls are redirected
handling a mixture of host and lkl descriptors

13

New feature introduction
Example

Multipath TCP ()
out-of-tree for long time

http://multipath-tcp.org/

http://multipath-tcp.org/

14

Multipath TCP
An extension to TCP subsystem
application compatibility
(unlike SCTP)
Use multiple paths

better throughput
(aggregation)
smooth recovery from failure
(handover)

http://blog.multipath-tcp.org/blog/html/2015/12/25/commercial_usage_of_multipath_tcp.html

http://blog.multipath-tcp.org/blog/html/2015/12/25/commercial_usage_of_multipath_tcp.html

15

Demo
verify site (cat /proc/net/mptcp base detection)
http://amiusingmptcp.de/

http://amiusingmptcp.de/

16

No penalty with userspace

network stack ?
Condition

To use Linux mptcp w/o replacing kernel

Questions

Is NUSE working fine (Will users wanna use it) ?
How different from native Linux kernel ?
With tolerable amount of overhead ?

17

netperf measurement
Client

Nexus5 anrdoid 6.01 (rooted)
LTE, wifi
LKL arm/android patched
or native kernel

Server
Ubuntu 16.04 (amd64) on KVM
virtio/Etherlink (uplink: 100 Mbps)
mptcp-4.4.70 (v0.92)

Software
netperf 2.7.x
10 seconds TCP_STREAM,
TCP_MAERTS
5 trials, over 64-64K byte packet

18

Single path (Wi-Fi only)

Tx (TCP_STREAM) Rx (TCP_MAERTS)
Condition

phone: LKL v.s. (stock) kernel
Comparable goodput
CPU utilization: LKL < native

19

Multipath TCP

Tx (TCP_STREAM) Rx (TCP_MAERTS)

Condition
phone: LKL v.s. mptcp kernel

Goodput (Tx) LKL > native
even it's using multipath

CPU: unstable (LKL)
LKL > native

20

Multipath TCP (Korea/KT)

Tx (TCP_STREAM) Rx (TCP_MAERTS)
Condition

phone: LKL v.s. (stock) kernel
native uses single-path/
LKL uses multi-path
at Ibis hotel

Goodput: No much gain with LKL
even it's using multipath

CPU: unstable (LKL)
LKL > native

21

Observations
IP conflicts may heavier

processed twice (host/lkl)
per packet

Results are often unstable
difficult measurement under
wireless media

22

Limitations
Implementations

DHCP only boot time (handover will fail)
IPv4 only on cellular interface (rmnet0)

Fundamental limitations of hijack library

asynchronous signal unsafe
MT unsafe

Required tweaks

grant NET_RAW permission (packet socket)
need filter out RST packet from host

iptables -A OUTPUT -p tcp --tcp-flags RST RST -j DROP

23

Further investigations
other platform

iOS11 now shipped userspace implementation
profiling

24

Summary
Use out-of-tree kernel as a library on Android

make your code easier to distribute
with privileged installation/operation

Comparable goodput over WiFi/LTE
Unstable CPU utilization with LKL
You can prepare your library file for your own purpose

25

Backups

26

Alternate network stacks
lwip (2002~)
mTCP [NSDI '14]
SandStorm [SIGCOMM '14]
rumpkernel [ATC '09]
SolarFlare (2007~?)
libuinet (2013~)
SeaStar (2014~)

None of them are feature-rich, or one-shot porting

