
rtnl mutex, the network stack big kernel lock

Red Hat

Florian Westphal
4096R/AD5FF600 fw@strlen.de

80A9 20C5 B203 E069 F586
AE9F 7091 A8D9 AD5F F600

netdev 2.2, Seoul, November 2017

Agenda

1 Intro: What is rtnetlink?

2 rtnetlink then and now

3 problems and challenges

What is rtnetlink?

kernels network configuration interface

ancient by kernel standards: rtnetlink.c added 20 years ago

CONFIG_RTNETLINK removed in 2001 (always enabled ever
since)

used by almost everything related to network configuration

ipv4, ipv6, can, decnet, bridge, mpls, . . .
adding/removing interfaces, tunnels, neigh entries, ip
addresses, ipv6 address labels, routes, qdiscs, . . .

rtnl_register(PF_INET, RTM_NEWROUTE, inet_rtm_newroute,

NULL);

...

void rtnl_register(int protocol, int msgtype,

rtnl_doit_func, rtnl_dumpit_func);

rtnetlink in Linux 4.13

static void rtnetlink_rcv(struct sk_buff *skb)

{

rtnl_lock();

netlink_rcv_skb(skb, &rtnetlink_rcv_msg);

rtnl_unlock();

}

rtnetlink_rcv_msg decodes request (contains family/type),
then invokes doit or dumpit callback

callbacks decode/validate netlink messages and perform
desired action

What is rtnl mutex used for?

1 serializes all rtnetlink requests

2 serializes with other userspace apis (sysfs, ioctl, ...) to
network configuration

3 protects list of net namespaces

As a consequence:

one request at a time, e.g. adding ip address must wait for
user listing interface properties

dump requests (fib, tc classifier list, interfaces)... are also
serialized

rtnl_mutex can be held for very long times:

schedule() (incl. GFP_KERNEL allocations)

synchronize_rcu(_net)

rtnetlink: caveats

callbacks rely on rtnl mutex being held

rtnl_lock guarantees consistency during a dump

can’t blindly avoid rtnl mutex

allow to annotate handler: RTNL_DOIT_UNLOCKED

then start to push rtnl_lock down

rtnetlink in Linux 4.14

static void rtnetlink_rcv(struct sk_buff *skb)

{

netlink_rcv_skb(skb, &rtnetlink_rcv_msg);

}

rtnetlink_rcv_msg():

flags = handlers[type].flags;

doit = handlers[type].doit;

if (flags & RTNL_FLAG_DOIT_UNLOCKED)

return doit(skb, nlh, extack);

rtnl_lock();

err = doit(skb, nlh, extack);

rtnl_unlock();

return err;

converting users

a few low-hanging fruits: RTM_GETROUTE, ipv6 address labels

handlers that don’t change anything or use different lock
internally

main problem: even if handler doesn’t modify anything it still
needs to provide consistent data

link ops, af ops: depend on RTNL mutex

other places that make assumptions on rtnl presence (e.g. for
upper/lower device in stacked setups)

rtnl_fill_ifinfo:

if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||

nla_put_u32(skb, IFLA_TXQLEN, dev->tx_queue_len)

e.g. don’t want to return garbled name to userspace
How to guarantee consistency without RTNL mutex?

converting users (2): rtnl af ops

address family specific operations

only a few instances of these exist

no callback implementation needs to sleep → convert to rcu

patch is straightforward

no advantage – still locked via rtnl

but needed to make more rtnl pushdowns possible

converting users (3): rtnl link ops

link specific operations

lots of instances

at least some callbacks depend on rtnl

need a way to prevent module unload/link ops removal while
callback is active

”standard solution”: .owner = THIS_MODULE;

however, turns out nothing needs to be done at all, provided
doit callback either

1 acquires RTNL mutex, or
2 takes reference count of the device that the link_ops are

assigned to, or
3 uses rcu read lock + dev_get_by_index_rcu

... because link op unregister removes all affected devices
(refcount must drop to 0)

general problems

lot of call paths, large amount of code (netdev ops!)

e.g., ”can i call netdev_ops->ndo_fdb_add() without
mutex”?

dev_get_phys_port_name()?
dev_num_vf()?
ndo_get_vf_port()?

not just because of races:

module removal
parallel changes create new problems
not-so-obvious dependencies, netdev notifiers in particular

problems (2): devinet

ip address assignment, among other things

also has legacy ioctl based interface

handlers acquire RTNL mutex to serialize requests

when a new address is assigned, a notifier call chain gets
invoked

allows in-kernel users (e.g. ipvlan) to veto the new address

requires serialization vs. other address changes in same family

problems (3): IP FIB

again rtnetlink, again RTNL mutex

FIB lookups already rcu safe

replace RTNL mutex with new FIB mutex?

creates potential for ABBA deadlocks
so only feasible if strict ordering is guaranteed
common add/delete ops should only grab new FIB mutex

FIB changes also occur indirectly by kernel (e.g. device link
state change)

notifiers are called with rtnl mutex already held
so we now acquire new FIB mutex while also holding RTNL
one
. . . acquiring RTNL mutex while holding FIB mutex would
deadlock

second issue: dump consistency checks

problems (4): IP FIB (continued)

netlink dumps can be large

can span multiple messages, i.e. dump request → read(),
read(), read(), ..

locks have to be dropped before returning to userspace

dumps can thus be inconsistent if changes happen in between

→ NLM_F_DUMP_INTR flag set in that case

fib notifier increments a counter, if counter changed at end of
dump: inconsistent result

problems (5): IP FIB (continued)

can’t just make counter atomic_t, consider:

1 A: a new FIB entry gets added
2 B: a dump request starts, fetches current counter
3 A: the new FIB entry is linked into the list
4 B: the dump request finishes, fetches counter
5 A: call_fib4_notifiers() is invoked and increments the

sequence counter
6 B: dump appears consistent

possible way out: seqcount_t

problems (6): lockless dumps

was already tried a few years back

large parts of rtnl dump functions make mutex assumptions

qdisc info – we would crash if other cpu replaces qdisc while
another dumps it
xdp information
SR-IOV information
link stats

Summary

network config path has many dependencies, e.g. via notifiers

makes it hard to remove rtnl locking

initial work completed

handlers can indicate they do not need rtnl mutex
a few simple handlers do so, e.g. ip route get ..

current focus: no rtnl mutex when dumping

Any questions?

